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Abstract

In this paper, a quadratic boundary element formulation for elasto-plastic creep damage problems in which strains and deformations
are mainly creep dominant is presented. In order to cover both plastic and creep deformations, the initial strain formulation is employed.
The Euler method with automatic time-step control scheme is implemented for time integrations. Creep rupture life is predicted using a
continuum damage mechanics approach. The proposed formulation is applied to the uniaxial, perforated plate and rotating disk.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The boundary element (BE) method is well established
as an accurate numerical tool, particularly well suited for
linear elastic problems. Due to its high resolution of stres-
ses on the surface, the BE approach has been shown to be
accurate in problems involving stress concentration,
fracture mechanics and contact analysis. However, its
extension to non-linear problems including material and
geometric non-linearity is not widespread and is under-
developed when compared to the finite element (FE).
Moreover, there has been very little work on the boundary
element implementation of creep continuum damage prob-
lems in the literature and BE elasto-plastic creep damage
formulations are not covered.

In this paper, a BE formulation for creep damage
problems based on an initial strain approach is presented.
Constitutive equations using one variable called damage
parameter, x, to characterise the deterioration of the mate-
rial are employed. Isoparametric quadratic elements are
employed for the line elements and surface cells. The objec-

tive of this paper is to present the BE method as an alter-
native accurate approach for elasto-plastic creep damage
problems in which strains and deformations are mainly
creep dominant.

2. Analytical formulations

2.1. BE analytical formulation

The boundary integral equation for non-linear material
behaviour includes an additional domain integral repre-
senting the non-linear domain effects. The BE formulation
for creep damage is based on the initial strain approach
which has the same form as that used for plasticity by
replacing plastic strain rates by creep strain rates as
follows:
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with the following notations: Uij, Tij are the second-order
displacement and traction tensors in the i direction at the
field point Q or q due to an orthogonal unit load at the var-
iable point P or p in the j direction. _ui; _ti and _ec

i are displace-
ment, traction and creep strain rates, respectively. fi

represents body forces. Capital letters are used to indicate
that the point concerned lies on the boundary S. Capital
letter A represents the solution domain. Cij is the free-term
tensor, whose components depend on the geometry, and
Wkij are the corresponding stress components. These ten-
sors can be derived from the fundamental solution to Kel-
vin’s problem in two dimensions and the auxiliary tensor,
W kij, is given as follows:

W kijðP ; qÞ ¼
m
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W kijðP ; qÞ ¼ 0 ðplane stressÞ
ð2Þ

in which r is the distance between P and q. The integral
expression for the total strain rates at an interior point p

can be obtained by differentiating the corresponding iden-
tity for the displacement rate. In the initial strain approach,
the convected differentiation of the related domain inte-
grals is employed and at internal points the correct expres-
sion for the total strain rates can then be written as follows:
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in which De
kij; S

e
kij and W e

ijkh, are the derivatives of the afore-
mentioned fundamental solutions [1]. The auxiliary tensor
(from plastic strain terms in the out-of-plane direction),
W e

ijkh is given as
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The integral free-term, F e
ij depends on the plastic deforma-

tion at the load point and it is given by
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2.2. Constitutive equations

Continuum creep damage constitutive equations can be
expressed as follows, see, for example, in Refs. [2–7]:
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where A, m and n are material constants, req is the equiv-
alent stress and Sij is the deviatoric stress. The damage
parameter, x, is scalar quantity, varying from 0 (no dam-
age) to 1 (complete failure) and its rate of change is given
in terms of a rupture stress, rr, as follows:

dx
dt
¼ M

ðrrÞv

ð1þ /Þð1� xÞ/
tðm�1Þ ð7Þ

where M, / and v are continuum damage material
constants. The rupture stress, rr, is given as a function of
maximum principal stress, ~r, and the equivalent stress,
req, as follows [8]:

rr ¼ ð1� aÞreq þ a~r ð8Þ

where a is a material constant, ranging from 0 to 1 and its
value can be determined from notched specimen uniaxial
tests, see in Ref. [9]. Under creep conditions, the effect of
local plastic deformations on the a-values can be neglected
[10].

For a material obeying the von Mises yield criterion and
linear isotropic hardening, the plastic strain increments are
given by the following incremental elasto-plastic flow rule:

_ep
ij ¼

3

2

_Skl _ekl

1þ H 0=3�l

� � _Sij

ð _reqÞ2
ð9Þ

in which _Sij and _req denote the current deviatoric stress
tensor and the equivalent stress, respectively. _ekl is the total
strain increments, �l is the shear modulus and H 0 is the
slope of the equivalent stress–plastic strain curve of the
material at the current equivalent stress, and is also known
as the plastic modulus of the material. It is defined for
isotropic hardening materials as follows:

H 0 ¼ dreq
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ð10Þ

The BE formulations for elasto-plastic problems are widely
discussed in the literature (see, for example, Refs. [1,11–
15]). For plastic analysis, in general, it is more practical
to reduce the number of the load steps to a minimum
and to attempt to find average values for the stress and
strain increments which are reasonably representative of
the particular load step. Although experience is needed to
specify the optimum size for the load steps, it is possible
to roughly determine the size of a particular load step by
considering the maximum allowable deviation from pro-
portional loading for the present load step [1,16,17].

It is clear from Eq. (8) that the rupture stress is a com-
bination of the von-Mises equivalent stress and the maxi-
mum principal stress. As in some cases, e.g. in the weld
specimens [10], the maximum principal stresses are higher
than the von-Mises equivalent stresses, then the maximum
principal stresses are most important for the damage
failure life.

H. Gun / Computational Materials Science 41 (2008) 322–329 323



Download	English	Version:

https://daneshyari.com/en/article/1564067

Download	Persian	Version:

https://daneshyari.com/article/1564067

Daneshyari.com

https://daneshyari.com/en/article/1564067
https://daneshyari.com/article/1564067
https://daneshyari.com/

