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Abstract

We present a method for improving the speed of geometry relaxation by using a harmonic approximation for the interaction potential
between nearest neighbor atoms to construct an initial Hessian estimate. The model is quite robust, and yields approximately a 30% or
better reduction in the number of calculations compared to an optimized diagonal initialization. Convergence with this initializer
approaches the speed of a converged BFGS Hessian, therefore it is close to the best that can be achieved. Hessian preconditioning is
discussed, and it is found that a compromise between an average condition number and a narrow distribution in eigenvalues produces
the best optimization.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In many cases the slowest step in a density functional
calculation (DFT) or other ab initio calculations is finding
the optimal atomic positions which minimize the total
energy. With older minimization approaches, such as the
conjugate gradient method, the number of evaluations
scales proportionally with the system size. More powerful
are quasi- Newton methods, in particular the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method, which can
show quadratic convergence provided that breakdowns of
the curvature condition (discussed later) are protected
against. Essential to the quasi-Newton methods are esti-
mates for the gradient and curvature of the potential energy
surface; the latter being stored in a matrix commonly

referred to as the Hessian, which contains all second deriv-
atives (or atomic force constants). The classic BFGS
method uses a simple diagonal matrix as the initial Hessian
estimate, perhaps with the initial diagonal term using the
Shanno–Phua scaling [1]; see also the discussion by Nocedal
and Wright [2]. In principle one could achieve far better
convergence by some appropriate choice of the initial Hes-
sian estimate, as suggested by some recent analysis [3–6].

In this paper, we detail an approach for improving on
the estimate of the starting Hessian, using a harmonic
potential describing the interactions between nearest neigh-
bor atoms. We find that it is important to combine this
with a diagonal component plus an appropriate scaling
term. Slightly unexpectedly, what turns out to be important
is a balance between making the initial Hessian estimate
replicate that of the true problem and keeping the condi-
tion number of the estimate small.

The structure of this note is as follows. First, we briefly
review conventional optimization methods (Section 2),
with some comments about how they might be improved
for density functional theory (DFT) calculations. Second,
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we outline the algorithm for generating the Hessian esti-
mate and implementing it into the all-electron (linearized)
augmented-plane wave + local orbitals (L/APW + lo)
package WIEN2k [7] (Section 3). The robustness of the
program is tested by performing geometry relaxations for
various classes of materials (Section 4). Finally, we con-
clude with a discussion on the importance of Hessian
preconditioning, and we propose a general scheme for
resolving these problems.

2. Optimization methods

At the heart of quasi-Newton methods is an expansion
of the energy in the form

Ey ¼ E þ gTsþ 1

2
sTHs ð1Þ

where E� is the predicted energy, E and g are the energy
and gradient for a step s from the current state, and H is
the Hessian matrix. The optimum step can be obtained
directly in principle as

s ¼ �H�1g ð2Þ

assuming that the Hessian is known. The concept of a
quasi-Newton method is to calculate an approximation
to the Hessian (or its inverse depending upon the exact
method used) from previous gradient information. The
most successful approaches use what are called secant
methods [8], in particular the Broyden–Flecher–Gold-
farb–Shanno (BFGS) method [9–12]. The most important
contribution from these minimization algorithms is the
use of Hessian updating techniques, which allow for the
collection of more information about the potential energy
surface (PES). In general, after each cycle the Hessian is
updated during the minimum search until the convergence
criterion is satisfied. It is important to recognize that con-
vergence can be achieved without ever reaching the true
Hessian, which suggests that the efficiency of the structure
relaxation depends on both the starting geometry and the
initial conditioning of the Hessian estimate (discussed
later). In fact, the true Hessian of the problem is not always
the optimal one, and a compromise between conditioning
and accuracy is much more desirable for optimization
problems; as Baali has shown much of the success of qua-
si-Newton methods relies on self-scaling algorithms [13,14].
The first estimate for the Hessian is usually a unitary ma-
trix, although this is not required if physical knowledge
of the system is available. For instance, in an earlier version
of the WIEN2k code [7] an estimate of the bonding force
constants and atom multiplicities was used for the initial
diagonal elements—this worked much better than a simple
constant. As we will see, one can do better than this.

The mathematics behind the secant method is that a
typical iteration for the minimization of f(x) is given by
the form

xkþ1 ¼ xk þ akdk ð3Þ

where dk ¼ �B�1
k rf ðxkÞ and Bk is the approximation for

the true Hessian that is updated and the step size ak is
chosen by a line search or a trust-region method (as here)
[15–17].

For any two consecutive iterations, xk and xk+1, with
their gradients, $f(xk) and $f(xk+1), information about
the curvature of the surface (the Hessian) is known since

½rf ðxkþ1Þ � rf ðxkÞ� � Bkþ1½xkþ1 � xk� ð4Þ

writing sk = xk+1 � xk and qk = $f(xk+1) � $f(xk), this can
be rewritten as

qk ¼ Bkþ1sk ð5Þ

The expression given in Eq. (5) is known as the secant
equation. An important constraint is that Bk+1 needs to
be positive definite for the step to be downhill. Multiplying
Eq. (5) on the left by sk yields what is called the curvature
condition sk Æqk > 0. This is equivalent to the geometric
interpretation that over the step length the object function
has positive curvature (i.e. the step is taken in a lower
energy direction). When this condition is satisfied, Eq. (5)
will always have a solution and the BFGS update

Bkþ1 ¼ Bk þ DBk; DBk ¼
qkqT

k

qT
k sk
� BksksT

k Bk

sT
k Bksk

ð6Þ

will maintain a positive definite approximation to the
Hessian.

It is worth mentioning that the curvature condition does
not always hold, so it must be explicitly enforced otherwise
the BFGS method can fail completely; this is one of the
weaknesses of these updating methods. This often occurs
when the character of the Hessian changes substantially
during the course of the minimization, which is more likely
to occur if one starts far from the minimum. Fortunately,
the BFGS update is rather well behaved, in that the
Hessian estimate will tend to correct itself in a few steps,
as compared to other approaches [2]. Three conventional
techniques exist for handling the case when the curvature
condition fails:

1. The calculations are restarted from the current position
with a diagonal initial estimate.

2. A skipping strategy is employed on the BFGS update
(Bk+1 = Bk).

3. The use of a revised (damped) BFGS update [2] which
modifies the definition of qk.

For the first case, any important curvature information
is lost and previous steps are essentially wasted. The second
technique allows one to incorporate the curvature informa-
tion at previous iterations. However, it requires careful
control, and too many updates may be skipped resulting
in further loss of curvature information. (The limited mem-
ory method [18,2] can do this better because it skips steps
far from the current location.) The particular code we
employed used the third method where the scalar tk is
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