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trollable structures. MOFs are excellent precursors for the design and fabrication of nanostructured
porous carbons and metal oxides, especially for hierarchical nanostructures. In this review, the recent
development and understanding of MOFs and MOF-derived nanomaterials in the applications of fuel
cells, batteries (e.g. lithium-ion, lithium-sulfur, and lithium-air batteries), and supercapacitors are
Keywords: summarized in detail. In particular, we focus on the design and fabrication of the morphology of
Metal-organic frameworks nanomaterials derived from MOFs and the significant impact of structure on the electrochemical per-
Energy storage and conversion formance in clean energy applications. Finally, we also present the future trends, prospects, and possible

Ejtiliflre;lion batteries obstacles of the development of advanced MOFs and MOF-derived nanomaterials for more promising
Supercapacitors and large-scale commercial applications of clean energy.
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1. Introduction MOFs with desired structures can be designed by careful selection

1.1. Metal organic frameworks

Metal-organic frameworks (MOFs) are crystalline materials
composed of metal ions (or metal clusters) and organic linkers [1-
5]. As a novel class of porous materials, MOFs have attracted great
attention in recent years owing to their high surface area and
permanent porosity.

Fig. 1 shows the structures of some reported MOFs. As shown in
the figure, MOFs are made by linking inorganic and organic units
via strong chemical bonds. The organic units are divalent or
polyvalent organic carboxylates, which when linking to metal-
containing units (e.g. Zn?*, Co?*, Cu?*, Mg?*, Ni?*, AI**), can
yield architecturally three-dimensional structures with well-
defined pore size distributions. The surface area of MOFs typi-
cally ranges from 1000 to 10,000 m?/g, and pore size can be tuned
as large as 9.8 nm by altering the organic and metal-containing
units [6-9]. As O’Keeffe previously reported, the same metal
clusters could be connected by ditopic carboxylate linkers with
different lengths to produce a variety of MOFs materials with the
same network topology (Fig. 1b) [10]. The variety of constituents’
geometry, size, and functionality has led to more than 20,000
different MOFs being reported and studied within the past few
decades [2]. Transition metals (e.g. Zn, Co, Cu, Fe, Ni), alkaline
earth elements (e.g. Sr, Ba), p-block elements (e.g. In, Ga), actinides
(e.e. U, Th), and even mixed metals have been used for the
synthesis of MOFs [11-15]. For example, MOF-5 is commonly
based on nets of linked Zn,O tetrahedrons via 1,4-benzenedi-
carboxylate (1,4-BDC) ligands, resulting in a three-dimensional
cubic network structure with interconnected pores diameter of
12 A. Moreover, simply changing the metal units from Zn4O to
Cr30 results in an obvious change in structure from MOF-5 to MIL-
101, which contains large cages with the diameter of ~3 nm
(Fig. 1) [16]. Since they are comprised of two main components,

of metal centers and different organic ligands [17].
1.2. Nucleation and growth mechanism of MOFs

The most prevailing synthesis methods for MOFs are hydro-
thermal and solvothermal approaches (Fig. 2) [18], which have
reaction times from several hours to days. In a typical solution-
based MOFs forming process, a nanoporous material can be
formed through a process of nucleation and spreading, and then
multiple nucleation aggregate with surface adsorbed organic
molecules into an inorganic-organic crystal. To produce con-
trollable nanoscale MOFs crystals and shorten the synthesis time,
some alternative synthesis approaches have been attempted, such
as microwave-assisted [19-21], sonochemical [22], electro-
chemical [23], and mechanochemical methods [24].

A key structural feature of MOFs is their high porosity as well as
high surface area, which plays a crucial role in their functional
properties. Therefore, understanding the molecular forming
mechanism of MOFs has been a widely researched topic [25-27].
By in situ observing the MOFs surface features in the process of
nucleation and spreading, Moh and co-workers [26] revealed the
forming process of Zeolitic Imidazolate Framework-8 (ZIF-8) in
2011. As Fig. 3(I) shows, the nanoporous ZIF-8 occurs through a
process of surface nucleation and spreading of successive meta-
stable unenclosed sub-steps in a correlated manner, eventually
forming stable surface steps of the enclosed framework structure.
After that, Zhou et al. revealed the formation mechanism of MOF-5
[Zns4O(CgH404)3] crystals. It is demonstrated that in the earliest
stage, Zn?>* and CgH40, molecules combined with each other and
forming crystalline nanoplates with diameter of 5-10 nm. With
the assistance of 1,4-BDC molecules, the nanoplates aggregate fast
from surface adsorbed organic molecules into layered inorganic—
organic microplates. With an increase in reaction time to 6 h or
longer, all the microplates further joined together to form loosely
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Fig. 1. Schematic representation of reported MOFs structures [3,16].
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