Journal of Nuclear Materials 441 (2013) 473-486

Contents lists available at SciVerse ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

Presented at the NuMat 2012 Conference, 22–25 October 2012, Osaka, Japan

An extended version of the SERPENT-2 code to investigate fuel burn-up and core material evolution of the Molten Salt Fast Reactor

M. Aufiero^a, A. Cammi^a, C. Fiorina^a, J. Leppänen^b, L. Luzzi^{a,*}, M.E. Ricotti^a

^a Politecnico di Milano, Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via Ponzio, 34/3, I-20133 Milano, Italy ^b VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland

ARTICLE INFO

Article history: Available online 29 June 2013

ABSTRACT

In this work, the Monte Carlo burn-up code SERPENT-2 has been extended and employed to study the material isotopic evolution of the Molten Salt Fast Reactor (MSFR).

This promising GEN-IV nuclear reactor concept features peculiar characteristics such as the on-line fuel reprocessing, which prevents the use of commonly available burn-up codes. Besides, the presence of circulating nuclear fuel and radioactive streams from the core to the reprocessing plant requires a precise knowledge of the fuel isotopic composition during the plant operation.

The developed extension of SERPENT-2 directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure (PSI-Switzerland) and adopted to analyze the MSFR fuel salt isotopic evolution.

Particular attention is devoted to study the effects of reprocessing time constants and efficiencies on the conversion ratio and the molar concentration of elements relevant for solubility issues (e.g., trivalent actinides and lanthanides). Quantities of interest for fuel handling and safety issues are investigated, including decay heat and activities of hazardous isotopes (neutron and high energy gamma emitters) in the core and in the reprocessing stream. The radiotoxicity generation is also analyzed for the MSFR nominal conditions.

The production of helium and the depletion in tungsten content due to nuclear reactions are calculated for the nickel-based alloy selected as reactor structural material of the MSFR. These preliminary evaluations can be helpful in studying the radiation damage of both the primary salt container and the axial reflectors.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recent studies have highlighted the promising features of the Molten Salt Fast Reactor (MSFR) [1], developed in the 7th EURATOM Framework Programme. This system offers the possibility to fully benefit from the adoption of a thorium-based closed fuel cycle [2]. Moreover, the fast neutron spectrum adopted, unlike previous experiences with moderated Molten Salt Reactors (MSR),¹ allows more effective incineration of transuranic (TRU) isotopes [3]. None-theless, several open issues still exist on different aspects of this innovative system. The adoption of an on-line (continuous) reprocessing scheme offers several advantages but may lead to some problems due to the necessity of handling highly radioactive streams. Moreover, the structural materials have to withstand severe conditions in terms of temperature, chemical environment and neutron flux [4].

* Corresponding author. Tel.: +39 0223996326.

E-mail address: lelio.luzzi@polimi.it (L. Luzzi).

The presence of a continuous fuel reprocessing prevents the adoption of commonly available fuel burn-up codes. Few codes were developed specially for this purpose in the past (e.g., [9,5,2,6]). In Table 1, a list of recent works concerning burn-up calculations in MSRs is presented, along with the main features of the employed codes. Some of these codes adopt approximations that may lead to inaccurate fuel evolution predictions or are not fully available. For this reason, a purpose-made extension of the continuous-energy Monte Carlo reactor physics and burn-up code SER-PENT-2 [10] is proposed in the present work.² The developed extension of SERPENT-2 code directly takes into account the effects of on-line fuel reprocessing on burn-up calculations and features a reactivity control algorithm. It is here assessed against a dedicated version of the deterministic ERANOS-based EQL3D procedure [11,2] and adopted to accurately study the isotopic evolution of

¹ See, e.g., documents related to liquid-halide (fluoride and chloride) reactor research and development, available at http://www.energyfromthorium.com/pdf/.

^{0022-3115/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jnucmat.2013.06.026

² The extended SERPENT-2 version has been preliminarily presented at the 2nd International SERPENT User Group Meeting. The methods for MSR burn-up calculations presented in this work will be implemented in the official distribution version of SERPENT-2. http://montecarlo.vtt.fi/mtg/2012_Madrid/index.htm.

Nomenclature

Latin symbols			one-group transmutation cross-section from nuclide <i>j</i> to nuclide <i>i</i>	
$b_{j \rightarrow i}$	branching ration from nuclide <i>j</i> to nuclide <i>i</i>	σ_{kf}	one-group fission cross-section of the heavy metal nu-	
Ci	atomic fraction of the isotope <i>i</i> in the feed vector	1	clide k $r_{\rm control} = 1$	
$FY_{k \rightarrow l}$	fission yield for the production of the fission product l	ϕ	neution nux (cm s)	
k.a	effective multiplication factor	Acronym	15	
k _{eff,tet}	target effective multiplication factor for the reactivity	ARR	Advanced Recycling Reactor	
-337-8-	control algorithm	CR	Conversion Ratio	
k _{inf}	infinite multiplication factor	CRAM	Chebyshev Rational Approximation Method	
Ni	atomic density of the generic isotope, i (cm ⁻³)	EFPY	Effective Full Power Years	
r	radial coordinate (m)	EVOL	Evaluation and Viability of Liquid Fuel Fast Reactor Sys-	
r _{abs}	absorption rate (s ⁻¹)		tems	
<i>r_{capt}</i>	capture rate (s ⁻¹)	FP	Fission Product	
Ζ	axial coordinate (m)	HM	Heavy Metal	
		LWR	Light-Water Reactor	
Greek symbols		MSFR	Molten Salt Fast Reactor	
3	user-defined tolerance for the reactivity control algo-	MSR	Molten Salt Reactor	
	rithm	pcm	per cent mille	
λ_i	decay constant of the generic nuclide <i>i</i>	ppm	parts per million	
$\lambda_{l,repro}$	effective removal constant for the reprocessing of the	PSI	Paul Scherrer Institut	
	fission product <i>l</i>	RHS	Right-Hand Side	
ho	reactivity	TRU	transuranic isotopes	

Table 1

Comparison of different works dealing with burn-up calculations in MSRs available in recent open literature.

	Nuttin et al. [5] ^a	Fiorina et al. [2] ^b	Sheu et al. [6]	Present work
Neutron transport code	MCNP	ERANOS	KENO-VI	SERPENT-2
Neutron transport method	Monte Carlo continuous energy	Deterministic S _n -16	Monte Carlo multi-group (238)	Monte Carlo continuous energy
Burn-up code	REM (in-house code)	ERANOS	ORIGEN-S	SERPENT-2
Solution of the Bateman	Fourth order Runge-Kutta method	Power series approximation of the matrix exponential	Power series approximation of the matrix exponential	Chebyshev rational approximation of the matrix exponential
Number of isotopes considered	All the isotopes available in the nuclear data library	167	388	All the isotopes available in the nuclear data library
	Short lived isotopes are treated separately	Short-cut and simplified decay chains	Short lived isotopes are treated separately	All the isotopes are included in the burn-up matrix
Non-soluble FP removal	Continuous (non-soluble FP are treated separately)	Continuous	Batch	Continuous
Soluble FP removal	Continuous	Continuous	Batch	Continuous
Feed material injection	Continuous	Batch	Batch	Continuous
Reactivity control	Yes	Only guarantees criticality at equilibrium	Yes	Yes
	Continuous adjustment of fissile material injection/extraction rate	-	Batch injection of fissile material	Continuous adjustment of fissile material injection/extraction rate

^a For the work of [5], the information not available in the paper has been taken from the PhD thesis of Nuttin [7].

^b For the work of [2], the information not available in the paper has been taken from the PhD thesis of Fiorina [8].

MSFR core materials. The work is focused on the study of the breeding performance of the reactor and the analysis of some parameters that are thought to be critical for the deployment of this technology.

The paper is organized as follows. In Section 2, a brief introduction to the MSFR concept is given, along with a description of the fuel cycle scenarios considered in the present work. In Section 3, a detailed description of the methodology adopted and of the extension of the SERPENT-2 code is presented. A comparison with the ERANOS-based EQL3D procedure is also reported for a selected case. In Section 4, the newly implemented reactivity control algorithm is presented. Finally, the main results related to isotopic evolution of the fuel salt (Section 5) and of the nickel-based alloy selected as structural material for the primary salt container and the axial reflectors (Section 6) are discussed. The main conclusion are drawn in Section 7.

2. Investigated reactor concept

2.1. The Molten Salt Fast Reactor

Details about the MSFR configuration can be found in Refs. [3,1,12]. In the following, a brief description of the reactor is given. Fig. 1 shows a schematic view of the MSFR. The molten salt mixture of the primary circuit acts as fuel and coolant at the same

Download English Version:

https://daneshyari.com/en/article/1565270

Download Persian Version:

https://daneshyari.com/article/1565270

Daneshyari.com