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a b s t r a c t

The thermodynamic interrelationship between thermal and elastic properties at constant pressure has
been studied from the point of view of an empirical linear relation between adiabatic bulk modulus
(BS) and enthalpy increment (DH). A thermodynamic analysis of this linear scaling suggests several pos-
sible simple relations for expressing the isobaric temperature dependence of various thermal quantities.
These approximations invoke one or more thermoelastic quantities such as Grüneisen, and Anderson–
Grüneisen parameters. The proposed BS–DH linear relation together with the auxiliary thermoelastic
relations deduced thereof constitute a self-consistent thermodynamic framework which will be useful
in a critical appraisal of the internal consistency of diverse sources of thermal and elastic property data.
The applicability of this framework is highlighted by modelling the available experimental data on ther-
mal and elastic properties of a-plutonium. In particular, a successful prediction of its molar volume could
be made from the recent experimental data on bulk modulus and assessed information on enthalpy
increment.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

A rigorous thermodynamic description of condensed phases in
terms of pressure (P), volume (V) and temperature (T) coordinates,
namely the equation of state (EoS) suggests that there must exist
certain well-defined interrelationship between thermal and elastic
properties, especially with regard to their temperature and pres-
sure dependencies [1,2]. A good example to illustrate this point
is the relatively temperature independent nature of the Grüneisen
parameter cG, which contains rather implicitly the compensating
or synergetic influence of temperature on different thermal and
elastic quantities, such as volume thermal expansivity (aV), molar
specific heat (CP), molar volume (V) and adiabatic bulk modulus
(BS) [3]. In a similar context, it also emerges from basic thermody-
namic principles that the isothermal pressure dependence of vol-
ume thermal expansivity (oaV/oP)T, is identically related to the
isobaric temperature variation of bulk modulus (oBT/oT)P [2]. In
reality, it is possible to establish different linkages or approxima-
tions connecting the temperature and or pressure dependencies
of different thermodynamic quantities [4–6]. Despite such theoret-
ical possibilities, it is not always easy to decipher the existence of a
particular thermodynamic linkage entirely from first principles [1].
This is so, because the measured thermal and elastic quantities
often take apparently diverse functional representations with
regard to their temperature and pressure variations [1,6]. However,
the experimental data on many thermophysical quantities of

condensed phases, in particular their pressure and temperature
variations, when taken and analysed together, reveal certain sur-
prisingly simple relations over a reasonable range of temperature
and or pressure [6–14]. Although appearing empirical at first sight,
such experimentally deduced correlations reflect certain underly-
ing physical basis, which if correctly identified and exploited judi-
ciously can lead to a versatile thermodynamic framework that will
help the cause of a self-consistent interpolation cum prediction of
thermal quantities from limited, inhomogeneous or even partial
data sets [10,11]. It is with this intent that we analyse in this study
the thermodynamic implications of a linear relationship connect-
ing molar volume (V) with enthalpy increment (HT � H0) and bulk
modulus under constant pressure conditions. The practical utility
of some of the thermodynamic relations developed from this linear
correlation is demonstrated by taking on a-plutonium as the case
study material.

2. Theoretical development

The starting point of our analysis is the following linear relation
which is essentially identical to the proposed originally by
Anderson [6,12], for characterising the relative variation of
adiabatic bulk modulus (BS) with respect to the corresponding
enthalpy increment (HT � H0) under constant pressure.

BS ¼ B0 � nSðHT � H0Þ: ð1Þ

In the above expression, BS and B0 stand respectively for the
adiabatic bulk modulus values at temperatures T and T0 respec-
tively. T0 is an appropriately chosen reference temperature. HT � H0

0022-3115/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jnucmat.2010.10.064

⇑ Corresponding author. Tel.: +91 44 274 80 306; fax: +91 44 274 80 081.
E-mail address: sraju@igcar.gov.in (S. Raju).

Journal of Nuclear Materials 408 (2011) 40–44

Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier .com/locate / jnucmat

http://dx.doi.org/10.1016/j.jnucmat.2010.10.064
mailto:sraju@igcar.gov.in
http://dx.doi.org/10.1016/j.jnucmat.2010.10.064
http://www.sciencedirect.com/science/journal/00223115
http://www.elsevier.com/locate/jnucmat


represents the corresponding incremental enthalpy, with H0 being
the enthalpy at the reference temperature. nS is assumed to be a
temperature independent thermoelastic constant as a first order
approximation. A detailed discussion on the physics of this expres-
sion, especially the nearly temperature independent nature of nS is
deferred to another section in this paper. In what follows, the atten-
tion is focused on enlisting some of the important thermodynamic
implications of this approximation. Eq. (1) can be rewritten as
follows.

HT ¼ H0 þ ðB0=nSÞf1� ðBS=B0Þg: ð2Þ

Now, the temperature dependent bulk modulus ratio BS(T)/B0, may
be expressed in terms of the corresponding ratio (VT/V0), of molar
volume by appealing to the concept of temperature independent
adiabatic Anderson–Grüneisen parameter, dS [6,13]. Thus one may
write,

BS=B0 ¼ ðVT=V0Þ�dS : ð3Þ

The Anderson–Grüneisen parameter dS is given by the following
expression [6,13]

dS ¼ �ð1=aV BSÞ � ð@BS=@TÞP ¼ �ð@ ln BS=@ ln VÞP: ð4Þ

It may be remarked at this juncture that Eq. (3) also follows from
the earlier theoretical analysis of Grüneisen [14], nevertheless in
the present study we retain the popular terminology of denoting
dS after Anderson [6,13]. The negative sign on the right-hand side
of Eq. (4) stands for the fact that as the volume increases with
increasing temperature at constant pressure, the bulk modulus
suffers a concomitant decrease, so that the derivative (oln S/oln )P

takes a negative value and dS in turn turns out to be a positive
quantity. Substituting for BS/B0 from Eq. (3) into (2), we obtain
the following relation connecting directly the enthalpy with molar
volume.

HT ¼ H0 þ ðB0=nSÞf1� ðVT=V0Þ�dSg: ð5Þ

It is useful to recall that apart from invoking the validity of Eq. (1),
the only other assumption that has gone into deriving Eq. (5) is the
temperature independent nature of dS. Following the example of
nearly temperature independent thermal Grüneisen parameter, cG

[15], it is often assumed that at high temperatures ðT P hDÞ, dS is
only mildly temperature sensitive and that for all practical purposes,
a nearly temperature independent constant value d0 may be used in
Eq. (5) [6,13]. On the contrary, it is also possible to improve the
technical sophistication of this simple approximation (Eq. (5)), by
taking recourse to some models that characterise the temperature
variation of dS(T) itself. It may be inferred from Eq. (4) that models
for the temperature variation of dS translate effectively into models
that account for the isobaric volume variation of bulk modulus
[6,11,13]. Thus for example, we may invoke the following empirical
relation proposed recently by Jacobs and Oonk for expressing the
isobaric volume dependence of bulk modulus [9].

BS=B0 ¼ expf�d0½ðVT � V0Þ=V0�g; ð6Þ

Using Eq. (6) in Eq. (2), we may derive

HT ¼ H0 þ ðB0=nSÞf1� expð�d0½ðVT � V0Þ=V0�Þg: ð7Þ

Incidentally, it must be mentioned that Eq. (6) presupposes the fact
that in place of temperature independent dS, the composite quantity
(dS/V) is taken as temperature independent [16]. Since the argument
inside the exponential function on the right-hand side of Eq. (7) is
rather small, that is, d0[(VT � V0)/V0]� 1, we may approximate
the exponential function as a series expansion in (VT � V0/V0) and
retaining only the linear term in such an expansion, we obtain after
some algebraic manipulation, the following linear correlation be-
tween enthalpy and molar volume.

HT ¼ H0 þ ðB0d0=V0nSÞðVT � V0Þ: ð8Þ

It is clear that Eq. (8) is a less sophisticated approximation than Eq.
(7); nevertheless it is a simple and useful one.

Alternately, one may also adopt the Chopelas and Boehler
approximation for expressing the volume dependence of dS [17].
In this approximation, a composite quantity A, defined by the fol-
lowing expression

A ¼ ð1þ dSÞ=VT ¼ ð1þ d0Þ=V0; ð9Þ

is taken to be temperature independent. That is in place of (dS/V),
the composite quantity (1 + dS)/VT is assumed to be temperature
independent. With this assumption, the corresponding expression
for the isobaric volume dependence of bulk modulus takes the fol-
lowing form.

BS=B0 ¼ ðVT=V0Þ expf�AðVT � V0Þg: ð10Þ

Substituting for BS/B0 from Eq. (10) in (2), we get the following
fourth approximation connecting enthalpy variation with volume.

HT ¼ H0 þ ðB0=nSÞ � f1� ðVT=V0Þ exp½�AðVT � V0Þ�g: ð11Þ

2.1. Estimation of thermoelastic constants dS and nS from standard
values of reference temperature thermal properties

The expressions given in (5), (7), (8), and (11) provide for a
ready estimation of enthalpy from molar volume data, if values
of B0, V0, nS and d0 are known. Of these, B0 and V0 are standard
quantities corresponding to the reference temperature T0. Reliable
estimates these quantities may be considered as readily available
input for many materials. Additionally, the values of thermoelastic
constants nS and d0 need to be known at the reference temperature.
As evident from the definition of dS vide Eq. (4), d0 is determined, if
the temperature derivative of bulk modulus (oBS/oT)0 and volume
thermal expansivity (a0) at the reference temperature (T0) are
known. For a good number of materials, the bulk modulus data
may be available over a small range of temperature in the low to
moderate temperature region. But in general, the extensive avail-
ability of temperature dependent elastic property data is still
rather scarce for many solids of practical interest. If information
regarding (oBS/oT)0 is lacking for a solid of specific interest, we
may employ the following relation suggested by Ledbetter for
obtaining a first order estimate of this quantity [18].

ð@BS=@TÞP ¼ �ðaV BSÞdS ¼ �ðCPcG=VÞdS ¼ �3RcGðcG þ 1Þ=V : ð12Þ

The above relation gives basically the high temperature constant
limit value of (oBS/oT)P. It is useful to recall that cG is the Grüneisen
parameter. Thus after defining all the quantities, the only remaining
thermoelastic parameter that remains to be explained in detail is nS.
This point is addressed in the following section.

3. Physical meaning of nS

Upon differentiating Eq. (1) with respect to temperature, we
get,

ð@BS=@TÞP ¼ �nSCP : ð13Þ

Now, by substituting for (oBS/oT)P in the above expression in terms
of dS from Eq. (4) and in addition, employing the following defini-
tion of the thermal Grüneisen parameter cG [3,6]

cG ¼ aV BSV=CP; ð14Þ

in effectively replacing the product of thermal expansivity and bulk
modulus (aVBS), we finally arrive at the following expression for nS

nS ¼ cGdS=V : ð15Þ
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