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a b s t r a c t

We present an extended methodology for parametric inference in complex population balance models.

The aim is twofold. Firstly, it is assumed that the parameter distribution of the model is a multimodal

Gaussian rather than a unimodal Gaussian. After projection of experimental data through a response

surface approximation, estimates for the parameters and their uncertainties along with the associated

weights of each mode are established. Secondly, the methodology is used to ask the following

question—if n professors each have a ‘best’ estimate of a particular parameter, which of these estimates

is more likely to be correct? A toy example is used to show the applicability of the methodology, aiding

in the discrimination between a bimodal and trimodal parameter distribution. The identification of the

‘best’ model parameter among two conflicting estimates is demonstrated in an example from

granulation modelling.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this article, we present an extended methodology for solving
parametric inverse problems for complex population balance
models. Furthermore, this methodology helps to resolve conflict-
ing parameter estimates. Population balance models are in
widespread use in chemical engineering, for instance for crystal-
lisation processes (Wynn and Hounslow, 1997; Kind and Nieken,
1995), biological systems (Abberger et al., 2006; Müller et al.,
2008), liquid–liquid extraction (Zamponi et al., 1996; Vikhansky
and Kraft, 2004a; Bart et al., 2008), combustion (Singh et al., 2005,
2006; Morgan et al., 2007; Celnik et al., 2009), nanoparticle
synthesis (Mühlenweg et al., 2002; Morgan et al., 2006; West
et al., 2007; Heine and Pratsinis, 2007; Sander et al., 2009), and
granulation (Cameron et al., 2005; Poon et al., 2008). The
relevance of the latter is reflected in the variety of equipment in
which granulation processes are performed, for example, fluidised
beds (Tan et al., 2004; Drechsler et al., 2005), drum granulators
(Adetayo et al., 1995) and high shear mixers (Darelius et al., 2005;
Braumann et al., 2007). Before these models can be used to make
predictions about the process behaviour, one is often faced with
the inverse problem, i.e., unknown parameters of the models need
to be established (Ramkrishna and Mahoney, 2002). When solving
this problem, the sensitivities of the process with respect to the
unknown parameters are required, whilst special algorithms are
available for the sensitivity analysis of coagulation processes

(Vikhansky and Kraft, 2004b; Vikhansky et al., 2006; Man et al.,
2010). A major difficulty in solving the inverse problem is that
often the computational model in question, for predicting
outcomes as a function of the unknown parameters, requires
much computational effort to evaluate. Faced with this problem,
we seek a response surface approximation to the computational
model response, and so this surrogate model now replaces the
true model response. This approach has for instance been used in
the modelling of combustion processes(Frenklach et al., 1992).
Given the surrogate model, we then have to solve the problem of
considering how any uncertainties in experimental data should
inform us on how certain we are about our parameter estimates.
This article extends the approach taken by Sheen et al. (2009) and
Braumann and Kraft (2010), where it was assumed that the
parameter distribution is a unimodal Gaussian, when in fact it is
an arbitrary distribution in general. We settle with approximating
this with a multimodal Gaussian distribution with associated
weights. This gives reasonable approximations to the arbitrary
distribution as well as easily interpretable results—the
multi-modality allows for different reasonable parameter values
to be considered. The multimodal generalisation is mathemati-
cally more challenging than the unimodal case.

This feature of the presented methodology is used to look at
following question: ‘‘If n professors each have a ‘best’ estimate of
a particular model parameter, which of these is more likely to be
correct?’’. The quality and applicability of the methodology is
demonstrated for two examples. Besides a toy example, a real life
example from wet granulation modelling is presented. The
process is modelled with a multidimensional population balance
approach, where the coalescence transformation is a function of
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the collision frequency constant. Under the assumption that this
constant has been estimated by two researchers, both using a
different method, the current methodology is used to identify
which of these values is more likely to be correct.

2. Problem description

In this section, we describe the situation a researcher is in,
where he/she is armed with some experimental data as well as a
mathematical model of the physical phenomenon in question. The
observed experimental data are denoted by the vector
gexp

0 ¼ ðZ
exp
0,1 , . . . ,Zexp

0,N Þ
>ARN where datum Zexp

0,i was procured under
experimental condition indexed by iA1, . . . ,N. We assume the
researcher also has available the corresponding experimental
uncertainties rexp ¼ ðsexp

1 , . . . ,sexp
N Þ

>ARN
þ . This is interpreted in

the following way—the ‘true’ experimental datum Zexp
i has an

uncertainty distribution of a univariate Gaussian distribution with
mean Zexp

i,0 and standard deviation sexp
i , independently over i, i.e.,

Zexp
i �N ðZ

exp
0,i ,ðsexp

i Þ
2
Þ ð1aÞ

or in multivariate language,

gexp �N Nðg
exp
0 ,Sexp

Þ, ð1bÞ

where Sexp is the N�N diagonal matrix with diagonal entries
ðsexp

1 Þ
2, . . . ,ðsexp

N Þ
2, and N N denotes the N-variate Gaussian

distribution.
The mathematical model to estimate the ‘true’ datum Zexp

i is
denoted by ZiðxÞ, where x¼ ðx1, . . . ,xK Þ

>ARK is some unknown

vectorial parameter whose value the researcher wishes to infer
using the experimental data and the model. In future sections, we
test our methodology in a real life example taken from the field of
granulation modelling—we take Zexp

i to be the average mass
of agglomerates, where iA1, . . . ,N and in this case, the set of
experimental conditions is some combination of impeller speed
and composition of the binder added to the granules.

We make a (not unreasonable) assumption that the researcher
has an a priori assumption that the most likely values for xk lie in
[ak,bk] for each k¼1,y,K for some ak, bk. The xk are rescaled
accordingly so that ak¼�1 and bk¼1, i.e., for the rest of this
paper, xkA ½�1,1� for all k.

2.1. Model response approximation

Suppose that it is computationally expensive to evaluate ZiðxÞ
for a given x. The approach taken to relieve this computational
burden is one used in Braumann and Kraft (2010) in order to
approximate ZiðxÞ locally by a second order response surface
(dropping the i indices for convenience):

ZðxÞ � b0þ
XK

k ¼ 1

bkxkþ
XK

k ¼ 1

XK

lZk

bklxkxl, ð2Þ

with b0, bk and bkl being the coefficients of the response surfaces
(the i indices have been dropped from these too). For the rest of
this paper, we simply replace the true model response by this
surrogate version. To further simplify the exposition, we will
rewrite Eq. (2) as follows:

ZðxÞ ¼ b0þb>xþx>Bx with b¼ ðb1,b2, . . . ,bK Þ
>, ð3Þ

where B is a K�K matrix with elements Bkk ¼ bkk and
Bkl ¼ Blk ¼

1
2bkl for ko l. Note that B is symmetric by construction.

2.2. Parametric inference

A difficulty with parametric inference is that the true

experimental data gexp are uncertain (Eq. (1b)). Any parameter
estimate based purely on the observed value gexp

0 is potentially
highly sensitive to this value. In fact, the uncertainty in gexp

induces uncertainties in the parameter values x. Thus the
approach taken in Braumann and Kraft (2010) is followed, where
the uncertainty distribution Eq. (1b) is ‘mapped’ through the
model response (or the surrogate model Eq. (3)) to find the
uncertainty distribution of x, i.e., x is taken to be a K-variate
random variable. In general, the distribution of x can have
arbitrary form—however, for the sake of simplicity of computa-
tion and interpretability, we restrict the form of this distribution
to be multimodal Gaussian. Note that in Braumann and Kraft
(2010), x was taken to be unimodal Gaussian, and thus this article
extends their work.

We now give the definition of a multimodal Gaussian
distribution—a scalar random variable y has a scalar multimodal
Gaussian distribution if conditional on another (discrete) random
variable m called the random mode, y has a scalar unimodal
Gaussian distribution. We express this in mathematical notation
as

yjfm¼ dg �N ðy0ðdÞ,cðdÞ
2
Þ where dAf1, . . . ,Mg and ð4aÞ

Pðm¼ dÞ ¼wðdÞ: ð4bÞ

The first line of Eq. (4) says that conditional on the event that the
random mode m is d, y has a Gaussian distribution with mean
y0(d) and standard deviation c(d). The second line gives the
distribution of the random mode m, i.e., the probability of being in
mode d is w(d). We call w(d) the weight of mode d. Note that since
d takes values in 1,y,M, we have M modes, and associated with
each mode d, we have the values y0(d), c(d) and w(d).

We are now in the position to give the form of the x
distribution. Each component xk is assumed to have a multimodal
Gaussian distribution, independently over the components k.
Mathematically, this is

xkjfmk ¼ dkg �N ðx0,kðdkÞ,ckðdkÞ
2
Þ where dkAf1, . . . ,Mkg and

ð5aÞ

Pðmk ¼ dkÞ ¼wkðdkÞ: ð5bÞ

Note that for each component xk, we have a random mode mk

which takes values in 1,y,Mk where the mk are independently
distributed over k. For each value dk of mk, we have the values
x0,k(dk), ck(dk) and wk(dk). For ease of exposition, we rephrase
Eq. (5) in terms of vectors and matrices:

xjm�N K ðx0ðmÞ,VðmÞÞ with m¼ ðm1,m2, . . . ,mK Þ
>

VðmÞ ¼ diag½c2
1ðmÞ,c

2
2ðmÞ, . . . ,c

2
K ðmÞ�, ð6Þ

where N K ðx0ðmÞ,VðmÞÞ denotes the joint multivariate Gaussian
distribution (of dimension K) with mean x0ðmÞ and covariance
matrix VðmÞ. See that VðmÞ is a diagonal matrix since each of the
xk are assumed to be independent Gaussian random variables
given m. Note the ease of interpretability of the distributional
assumption on xF we can say that for each xk, there are multiple
modes, and the weight of each mode giving the probability that
the mean of that mode is the correct value of xk. Of course, it is
non-trivial how to pick the ‘best’ parameter estimate for xk, but
sometimes giving the full answer is better than forcing a single-
point answer—if it really were clear that xk is almost certainly one
particular value, our computation would show that only one
mode of xk has weight of nearly unity. On the other hand, if xk has
two modes of nearly equal weight, then the proper answer is that
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