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Irradiation damage accumulation in metals is studied via a dynamical description of the evolution of a
system of interacting crystal defects, focusing on the complex behavior caused by system instability
and symmetry-breaking. The case of a supercritical void ensemble in a temperature range where void
growth is significantly affected by vacancy emission is specifically considered. Conditions of instability
are found in the growth dynamics of the void system, the resulting bifurcation of which causes the
shrinkage of some voids and the growth of others, resulting in coarsening of the ensemble. The presence
of a small amount of one-dimensionally migrating self-interstitials with mean-free path comparable to
the average distance between voids can bias the void coarsening process, such that the non-aligned voids
have a much larger probability to shrink than the aligned ones. The post-bifurcation evolution leaves
voids aligned along the crystallographic directions to form an imperfect lattice with empty lattice sites
eventually filled by preferred nucleation. For this process to occur the irradiation temperatures must
be higher than 0.4 of the melting temperature. The typically low number densities of voids at these tem-
peratures necessarily entail a void lattice parameter much larger than when vacancy emission is negligi-
ble. The implication of the formation of the hyper void-lattice, an appellation adopted from earlier
studies, on properties of one-dimensionally migrating self-interstitials is also discussed.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Microstructure development during particle irradiation often
results in nano-scale ordered structures. Particle irradiation typi-
cally produces regions of displacement damage at a rate of 1012

collision events per second per cm3. When the damaged region
cools down, crystal defects are ‘quenched in’. As irradiation pro-
ceeds, crystal defects accumulate and interact, and the microstruc-
ture evolves under non-linear driving forces. The evolution of the
accumulating defects is conventionally described by coupled rate
equations, analogous to chemical processes. The complexity of
the dynamics of such coupled nonlinear systems is well known
[1]. However, to maintain the manageability of the calculation, a
simplifying mean-field approximation is usually adopted, in which
the spatial and size distributions of the sinks and the mobile-defect
concentrations are averaged out. Despite the apparent simplicity of
the equations, the corresponding dynamical behavior is not neces-
sarily simple. Complexity due to dynamical instabilities and
bifurcations gives rise to phase-change like behavior of the system
[2–4]. This issue is even more pronounced when the spatial and
size distributions [5–9] of the reaction partners are explicitly taken
into account. Thus, when the long-wave-length solution becomes
unstable, dominance of the shorter wave length leads to spatial

ordering [5–8]. Instability in the size distribution function leads
to void coarsening when the stochastic nature of the irradiation
damage and defect accumulation processes are taken into account
[9]. The presence at the instability point of a small bias due to one-
dimensionally migrating self-interstitials with mean-free path
comparable to the average distance between voids influences the
void coarsening process such that shrinkage predominantly occurs
with the non-aligned voids, and growth with the aligned ones. The
post-bifurcation evolution then leaves voids aligned along the
crystallographic directions to form an imperfect lattice with empty
lattice sites eventually filled by preferred nucleation.

Indeed, the crystallographic structure and the orientation of
void lattices in irradiated metals are well known to follow those
of the host lattices [5]. For this reason, self-interstitial atoms (SIAs)
moving one-dimensionally along the close-packed crystallographic
directions have been a prime factor in many studies of void-lattice
formation [2–4, 6–11]. Yet, the detail mechanism is still controver-
sial. Recent Monte Carlo simulation [12] suggests that the 1-D self-
interstitial transport of either the crowdions or small interstitial
clusters may bring about coalescence between neighboring voids
along the crystallographic directions. Coalescence must not be
overwhelming for void-lattice formation to be feasible. In another
aspect, for a void lattice to form from a randomly distributed
ensemble of supercritical voids [5,13], non-aligned supercritical
voids outside lattice positions have to disappear. As shown in [9],
1-D interstitial diffusion by itself does not cause the non-aligned
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supercritical voids to shrink away. It only leads asymptotically to
an ensemble in which smaller non-aligned voids coexist with lar-
ger aligned ones.

In some cubic metals such as vanadium and aluminum, molec-
ular dynamics simulations show that intracascade clustering is an
event of low probability [14,15]. Available experimental data on
void swelling in aluminum is also completely explicable in terms
of the concept of standard rate theory based on the dislocation bias
[16–19]. Production bias [20] and initial defect clustering in cas-
cades do not seem to play an important role. This indicates that
the actual fraction of long-range 1-D moving interstitials needed
for void-lattice formation may not have to be significant.

Experiments find that void ordering is usually preceded by the
coarsening of randomly distributed supercritical voids in an
ensemble, resulting in the growth of the larger voids and the
shrinkage of the smaller ones [5,13]. In this regard, one may note
that void coarsening may occur due to the dynamic instability of
the void-size distribution, caused either by the usual vacancy emis-
sion, or as a stochastic effect due to the fluctuation of point defect
fluxes received by the voids [9,21–23]. The former occurs because
of the instability caused by the positive feedback effect due to the
increasing vacancy emission from a shrinking void. In the latter
case, when voids shrink under fluctuating point-defect fluxes there
is also a positive feed-back action because the probability of disso-
lution of the supercritical voids increases as the voids shrink [9,21–
23]. That void dissolution does happen under this condition has
been explicitly demonstrated both analytically via the solution of
the Fokker–Planck equation [23], and numerically via the solution
of the time-dependent master equation [22].

In a previous paper [9] we showed that when the average net
vacancy flux received by the voids became sufficiently low, dy-
namic instability of the void-size distribution might occur, and a
fraction ei of self-interstitials as small as �1% moving one-dimen-
sionally was enough to instigate stochastic dissolution of the
non-aligned voids. The critical condition was typically satisfied
when the swelling rate _S dropped below 0.1%/NRT dpa. We also
showed that the aligned voids were more resistant to shrinkage
than the non-aligned ones because of their larger growth rate.
The elimination of non-aligned voids would feed the growth of
the aligned ones and at the same time created a partial void lattice
with many empty lattice sites where the ‘shadowing’ [2,3] of
neighboring voids produced local depressions of 1-D self-intersti-
tial fluxes. With a void nucleation probability that increases expo-
nentially with the net vacancy flux [23], practically nucleation of
all new voids occurs in these SIA-deficient locations [9]. The end
result of this development is that only the aligned voids survive
and multiply to form a void lattice, as the winning species of the
Darwinian competition [9]. We note that in this process, the most
important role of the 1-D moving self-interstitials is as a bias favor-
ing the nucleation and survival of the aligned voids during the
coarsening process. Due to the highly selective void nucleation
sites, void coalescence due to the 1-D self-interstitial transport is
unimportant as discussed in [9,24].

Void dissolution due to stochastic fluctuations may occur only
when both the void growth rate and the average void radius are
sufficiently small [9,21–23]. This condition is satisfied in most
cases where void-lattice formation is observed [5,25–27]. Excep-
tions are found in the case of the so called hyper void lattices, such
as in neutron irradiated aluminum, where lattices with very large
lattice parameter (200–250 nm) are formed from voids as large
as 60–90 nm in diameter, undergoing healthy growth (swelling
rate �0.5%/NRT dpa) [28,29]. Obviously, stochastic fluctuations
can hardly have any effect on the evolution of voids of this size.

As mentioned in the foregoing, dynamic instability of the void-
size distribution due to the positive feed-back of vacancy emission
from a shrinking void may also be reflected in the coarsening of a

void ensemble as in Ostwald ripening. Indeed, it has been shown
analytically that the dynamics of evolution of a spatially homoge-
neous distribution of voids is only conditionally stable at a temper-
ature where vacancy emission from the voids is important [30,31].
Since the aligned voids ‘shield’ each other against 1-D moving SIAs,
they receive a reduced flux of self-interstitials [2,3]. As a result, the
aligned voids will be larger in general than the non-aligned ones,
and hence have lower vacancy emission rates. This suggests that
non-aligned voids will dissolve in preference to the aligned ones
during coarsening. It is our aim in this paper to examine in greater
detail the possible dynamic instability due to vacancy emission as
a mechanism for the dissolution of non-aligned voids during void-
lattice formation. We shall adopt an analytical approach, and the
calculated results will be discussed in comparison with the avail-
able experimental data on void hyperlattices.

2. Dynamic stability of the size distribution of a void ensemble

We consider the evolution of a void ensemble, in which the ra-
dius of the mth void is denoted by Rm. Taking into account vacancy
emission from the voids, the boundary conditions on the void sur-
face is given by,

CvðrÞjjr�rm j¼Rm
¼ CsðRmÞ ¼ C1expð2csX=kTRmÞ: ð1Þ

Here Cs (Rm) is the equilibrium concentration of vacancies on its sur-
face at an absolute temperature T, C1 is the equilibrium vacancy
concentration at T far from any sink, cs is the surface tension coef-
ficient, X is the atomic volume and k is the Boltzman constant. In
Eq. (1) we neglect the gas pressure, and assume that the dominant
stress on the void is due to the surface tension. For self-interstitials
we assume the zero-boundary conditions on the void surfaces.

Let us first consider the major component of point-defects for
which the mobility is three-dimensional (3-D) and assumed isotro-
pic for simplicity. In the space between the voids, their local stea-
dy-state concentrations satisfy the conservation equations:

Gj þ Djr2Cj � DjZjqdðCj � Cj1Þ ¼ 0; ð2Þ

where Gj (j = i,v) is the effective production rate of point defects, Dj

and Cj (r) are the 3-D diffusion coefficient and the concentration of
point defects at the location r, respectively, qd is the total disloca-
tion density, Zj is the reaction constant between dislocations and
three-dimensionally moving point defects, and Cj1 is the equilib-
rium concentration of point defects. Since Ci1 << Cv1, in the follow-
ing we put Ci1 = 0, and Cv1 = C1. For simplicity we also assume
Zv = 1, and Zi = Z.

Following [31], the solution of Eq. (2) can be written as

DjCjðrÞ ¼ DjC
0
j þ

X
m

Wjm

jr� rmj
expð�

ffiffiffiffiffiffiffiffiffiffi
Zjqd

q
jr� rmjÞ; ð3Þ

where Cj
0 is the homogeneous solution of Eq. (2), and Wjm are con-

stants determined by the boundary conditions. The summation in
Eq. (3) is taken over all voids in the ensemble, which are assumed
to be randomly distributed in space with a number density N.

We now consider the dynamical stability of an ensemble of
voids characterized by a radius R. Suppose the mth void is sub-
jected to an infinitesimal perturbation and its radius becomes
Rm = R + dRm. Then, when both RN1/3 and Rqd

1/2 << 1, within the
first order approximation we have

Wjm ¼Wj þ ~Wj
dRm

R
; ð4Þ

with

Wi ¼ ~Wi ¼ �
RGi

ð4pNRþ ZqdÞ
; ð5Þ
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