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a b s t r a c t

The conventional kinetic analysis of an overall reaction (OR) is limited to a single sequential pathway of

molecular steps at a time, based either on the general quasi-steady state (QSS) approach of Bodenstein,

or on the much simpler but limited Langmuir–Hinshelwood–Hougen–Watson (LHHW) approach based

on assuming a single rate-determining step (RDS), the remaining being quasi-equilibrated (QE). We

recently described a new algebraic methodology for deriving the QSS rate expression for a reaction

sequence, which allowed interpretation of the final result in an Ohm’s law form, i.e., OR rate=OR motive

force/OR resistance of an equivalent electric circuit, where the consecutive mechanistic steps represent

resistors in series. Here, we propose a similar Ohm’s law form of QSS rate for a reaction system

involving parallel pathways, whose equivalent electrical circuit derives directly from the reaction route

(RR) Graph of its mechanism, as proposed earlier by us. The results are exact for a reaction network with

mechanistic steps linear in intermediates concentrations, while they are approximate, albeit accurate,

for non-linear step kinetics. We further show how the LHHW methodology, combined with the concept

of intermediate reaction might be utilized to obtain the step resistances involved. For illustration, we

utilize the relatively simple examples of: (1) the gas-phase hydrogen–bromine non-catalytic reaction

(non-linear kinetics), and (2) zeolite catalyzed N2O decomposition reaction (linear kinetics). However,

the approach is useful for more complex non-catalytic, catalytic and enzymatic reactions networks

as well.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many of the industrially significant reactions involve parallel
reaction pathways. A quandary for the reaction engineer has been
how to explicitly account for these alternate pathways in
describing the overall reaction (OR) rate, rOR, in terms of the
kinetics of the elementary reaction steps, i.e., in determining the
so-called OR ‘‘rate law’’ in terms of the known step weights, or
(Christiansen, 1953; Horiuti, 1973; Temkin, 1979; Wagner, 1970),
which represent the step mass-action kinetics with the exclusion
of the unknown intermediates compositions. The most general
approach for this is the quasi-steady state (QSS) approximation of
Bodenstein (Christiansen, 1953; Horiuti, 1973; Temkin, 1979;
Wagner, 1970), based simply on the assumption of time-
invariance of reaction intermediates. However, an explicit QSS
rate expression for overall rate rOR is often unwieldy, or not
possible at all when step kinetics are non-linear in intermediates
concentrations (Lazman and Yablonskii, 1991), only numerical
results then being possible for a given set of reaction conditions.

The Langmuir–Hinshelwood–Hougen–Watson (LHHW) meth-
odology (Hougen and Watson, 1943), on the other hand, does

generally allow the development of simple explicit expressions
for rOR, but it is based on the often arbitrary assumption of a single

rate-determining step (RDS), the remaining being at quasi-
equilibrium (QE). Further, the a priori identification of such a
RDS in the mechanism, if it exists at all, is not simple. Dumesic
(1999) has presented an approach based on De Donder relations
for identification of the RDS involving the concept of step
reversibility. Thus, the RDS is defined as the step, sr, whose step
reversibility, zr ð � r

’

r= r
!

r ¼ expð�ArÞ, the ratio of the step rate in
the backward, to that in the forward direction), is approximately
equal to that of the OR, zOR � r

’

OR= r
!

OR ¼ expð�AORÞ. Here, the
dimensionless De Donder affinity, Ar ¼�DGr=RT for the step, and
AOR ¼�DGOR=RT for the overall reaction.

Campbell (2001) has, however, pointed out that such a
criterion for identifying the RDS is limited, since reversibility of
a step represents only its thermodynamic driving force, not
containing any information, for instance, on its activation barrier,
or kinetics. On the other hand, identification of RDS simply based
on activation barriers is fraught with risk as well. In fact, the net
step rate involves both kinetics and thermodynamics, i.e.,
rr ¼ r

!

r� r
’

r ¼ r
!

rð1�zrÞ ¼ r
!

rðErÞ, where Er ¼ 1�expð�ArÞ repre-
sents the thermodynamic driving force (Christiansen, 1953),
while 1= r

!

r represents a kinetic resistance. Campbell’s degree of
control approach, on the other hand, based on sensitivity analysis
to identify the step rate constant(s) that most influence rOR,
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provides a more robust approach for the identification of the RDS.
However, it is based on a numerical analysis. The reaction step
resistance, Rr, discussed by us below and elsewhere is, in fact, the
most convenient criterion for identifying the slow or rate-limiting
steps in a sequence. We assume, in fact, that there can, in general,
be more than a single rate-limiting step (RLS), the latter being
distinct from the rate-determining step (RDS).

Furthermore, given that there are now first-principles and
semi-theoretical methods (Heyden, 2005; Heyden et al., 2005;
Shustorovich and Sellers, 1998) available that can predict the
kinetics of the elementary reaction steps with increasing
accuracy, it is now increasingly important that more comprehen-
sive methods for the analysis of reaction networks be developed,
which is our objective here, based on an intuitively appealing
electrical analogy of reaction networks.

The electrical analogy is, in fact, commonly invoked in a
qualitative discussion of reaction mechanism and kinetics (Fogler,
2006), wherein reaction steps are represented by individual
resistances, with the current (rate) being driven by an overall
motive force. The electrical analogy was, in fact, first proposed by
Nernst (1926), who suggested that the rate of a chemical reaction
might be represented in analogy to Ohm’s law, being equal to a
‘‘chemical force’’ divided by a ‘‘chemical resistance.’’ Besides its
intuitive appeal, the analogy is useful in visualizing the network,
and especially when rationalizing the assumption of a RLS, as one
with the highest ‘‘resistance’’ in a sequence. However, it is rarely
utilized in a quantitative analysis. This is so, because the
relationships of the step resistance and the motive force to the
conventional reaction kinetic and thermodynamic quantities have
remained unclear, and it is not known how one might draw an
appropriate equivalent electric circuit for a complex mechanism.

We have, actually, more recently developed a Reaction Route
(RR) graph approach (Fishtik et al., 2004a, b, 2005a, 2006) that
puts this analogy on a rigorous footing by: (1) providing the
equivalent electrical circuit for a given mechanism adapted
directly from its RR graph, and (2), defining the step resistance
in terms of step kinetics via the relation Rr � lnð r

!

r= r
’

rÞ=ð r
!

r� r
’

rÞ,
and the dimensionless De Donder affinity, Ar, as the driving force,
resulting in Ohm’s law form for step kinetics, rr ¼Ar=Rr. The
corresponding overall rate then takes the form rOR ¼AOR=ROR,
where ROR may be obtained in terms of Rr from the RR graph in a
manner completely equivalent to that in electrical circuits (Fishtik
et al., 2005b). However, only numerical analysis is possible in this
manner, since the step rates, r

!

r and r
’

r, and, hence, the step
resistances are not known a priori, involving the unknown
intermediates concentrations.

In a recent paper (Vilekar et al., 2009), however, we followed
an alternate algebraic methodology for the QSS analysis of a
reaction sequence, in which the final result was of a form that
could be cast into an alternate Ohm’s law form, i.e., rOR ¼ EOR=R�OR,
where the OR driving force is in the conventional form,
EOR ¼ 1�zOR ¼ f1�expð�AORÞg, and the OR resistance could be
expressed as a sum of the step resistances in series, R�OR ¼

P
rR�r,

while the step resistances R�r could be determined a priori via the
LHHW methodology, thus providing a new analytical approach
based on the electrical analogy. Here, we show that this new form
can be extended readily to parallel reaction networks as well,
where R�OR relates to step resistances R�r in the usual manner of
electrical circuits. This approach not only provides an explicit QSS
rate expression for a given mechanism in terms of step kinetics,
but also affords perceptive insights into the dominant pathways
and rate-limiting steps, thus allowing rigorous network pruning.

We first describe how one might use a given molecular
mechanism of an OR to construct its RR graph, which depicts
reaction steps as branches interconnected at nodes such that all

possible reaction pathways for the OR are represented simply as

walks on the RR graph. Next, the RR graph is converted into an
equivalent circuit by simply replacing the branches by resistors
representing the steps, followed by Ohm’s law representation of
overall rate, with the overall resistance being obtained from the
resulting circuit. We show, for the case of linear step kinetics, that
the result is exactly the same as that obtained via linear algebra
from the conventional QSS analysis. Further, we show that, while
approximate, the results are very accurate for non-linear kinetics
as well. All the necessary details along with definitions from our
previous work are also summarized so that the treatment below is
self-contained.

For ease of comprehension, further, the application of our
approach to parallel pathway reaction networks is illustrated here
for the relatively simple cases of: (1) gas-phase hydrogen–
bromine reaction (non-linear kinetics), and (2) zeolite catalyzed
N2O decomposition reaction (linear kinetics) mechanism, both
involving only a handful of steps. Of course, more complex
mechanisms are similarly amenable to kinetic analysis.

2. Theory

2.1. Reaction Routes: basic definitions

We first consider a simple generic 4-step mechanism with
parallel pathways given in Eq. (1), in order to explain the
essentials of RR graphs approach, while avoiding the mathema-
tical details (Fishtik et al., 2004a, b, 2005a, 2006).

ð1Þ

This mechanism admits two parallel pathways, or reaction routes
(RRs), as indicated above by the stoichiometric numbers in the
two columns. Thus, steps s1, s2, and s3, when added, result in a
cancellation of the intermediates I1 and I2, resulting in the OR.
Similarly, s1þs4 provides the OR, which is a second RR. More
formally, thus, we define:

Reaction Route (RR): or a reaction pathway, or a reaction
sequence, is a linear combination of elementary steps,Pp

r ¼ 1 sgrsr that eliminates a specified number of intermediate
and terminal species to produce a reaction, where sgr is the
stoichiometric number (usually, 0, 71 or 72) of step sr in the gth
RR. If all the intermediate species are eliminated the reaction
route is called a Full Route (FR).

Thus, for the above example, the two RRs may be written as

FR1 : OR¼ ðþ1Þs1þðþ1Þs2þðþ1Þs3

FR2 : OR¼ ðþ1Þs1þðþ1Þs4

)
ð2Þ

On the other hand, an Empty Route (ER) or a cycle is a linear
combination of the elementary steps such that all of the species,
both intermediate and terminal, are cancelled, thus producing the
so-called ‘‘zero’’ OR (i.e., the stoichiometric coefficients of all the
species are zero).

In fact, since subtracting one FR from the other, e.g., FR1�FR2,
would eliminate all the species, it can provide an empty route
(ER), e.g.,

ER1 : 0¼ ðþ1Þs2þðþ1Þs3þð�1Þs4 ð3Þ

A negative stoichiometric number, as above, simply indicates that
the step in the given RR is followed in the reverse direction to that
indicated in Eq. (1). Since all elementary steps are reversible, in
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