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Abstract

Defining the limits of visibility of small defect clusters and dislocation loops, and optimal diffraction conditions for elec-
tron microscope imaging remains one of the central problems of electron microscopy of irradiated materials. Using
computer image simulations based on the propagation–interpolation algorithm for solving the Howie–Basinski equations,
we investigate the relation between the actual and the ‘observed’ size of small loops, the part played by many-beam dynam-
ical diffraction effects, and limitations of electron microscope imaging in identifying the structure of small defects. We also
discuss the link between real-space imaging and diffuse scattering by small dislocation loops.
� 2007 Elsevier B.V. All rights reserved.

1. Introduction

Electron microscopy of irradiated materials is
arguably the only available method of visualizing
defect structures formed under irradiation. For
example, small dislocation loops and point-defect
clusters in crystals are usually investigated using dif-
fraction contrast images produced by transmission
electron microscopy. For relatively large defects a
combination of dynamical imaging and image con-
trast simulations has proven very successful for
determining defect structures [1]. At the same time
very small clusters are usually better seen under

weak-beam diffraction conditions. Image simula-
tions are necessary for a full analysis of such images
[2,3].

In this paper we give a brief review of a recently
developed propagation–interpolation algorithm for
solving the Howie–Basinski equations [4] and its
applications to simulating electron microscope
images of small dislocation loops. We also outline
the principles of observation of electron diffuse scat-
tering by individual defects [6].

2. The propagation–interpolation algorithm

In many-beam dynamical diffraction theory the
wave function w(r) = w(x,y,z) of high-energy elec-
trons propagating through a thin foil is approxi-
mated by a sum of plane waves with slowly
varying amplitudes /g(r) as
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wðrÞ ¼
X

g

/gðrÞ exp½2piðkþ gþ sgÞ � r�: ð1Þ

Here k is the wave vector of electrons incident on
the foil and sg is the excitation error for the beam
with diffraction vector g. Vector sg is parallel to
the zone axis z and its length is defined by the con-
dition of energy conservation k2 = jk + g + sgj2.
The potential of interaction between the high-en-
ergy electrons and the crystal is evaluated using
the deformable ion approximation

V ðrÞ ¼
X

g

V g exp½2pig � ðr� RðrÞÞ�; ð2Þ

where R(r) is the field of atomic displacements
around a defect. In our simulations this field is as-
sumed to be continuous and is evaluated either by
using linear anisotropic elasticity [5] or by interpo-
lating between discrete atomic positions found using
molecular statics or molecular dynamics.

By inserting (1) and (2) into the Schrödinger
equation and neglecting the second order deriva-
tives, we arrive at the Howie–Basinski equations [4]

ðkþ gþ sgÞ � r/g ¼ �ipU 0/g � ip
X

g0
ð1� dgg0 Þ

� U g�g0 exp½2piðg0 � gÞRðrÞ
þ 2piðsg0 � sgÞ � r�/g0 ; ð3Þ

where Ug = �(2m/h2)Vg and h = 2p�h is the Planck
constant. To eliminate the phase factors in Eq. (3)
we apply a gauge transformation

/gðrÞ ¼ UgðrÞe�2pig�RðrÞe�2pisg�re
�ip

U0
ðkþgþsgÞz

z
: ð4Þ

The new amplitudes Ug(r) satisfy equations

ðkþ gþ sgÞ � rUg ¼ 2piðkþ gþ sgÞ � sðRÞg Ug

� pi
X

g0
ð1� dgg0 ÞU g�g0Ug0 ; ð5Þ

where sðRÞg ¼ sg þr½g � RðrÞ� is an effective excitation
error that varies spatially as a function of the distor-
tion field oRi/oxj, where i, j = 1,2,3. Since /g and Ug

in Eq. (4) differ only by a phase factor, the gauge
transformation does not affect the intensities of
the transmitted and diffracted beams and the simu-
lated images. The lattice distortion introduced by a
defect appears only in the local excitation error sðRÞg .
If the crystal undergoes a homogeneous (affine)
transformation then sðRÞg is a constant, and Eq. (5)
describes the diffraction from a homogeneously
deformed crystal. This suggests that Eq. (5) may
be solved numerically for an arbitrarily deformed

crystal by dividing it into small cells and taking
sðRÞg as a constant within each cell. Anomalous
absorption is introduced phenomenologically by
adding an imaginary part to the Fourier compo-
nents of the potential [7,8].

If the column approximation is applied to the
transformed equations (5) we neglect the compo-
nents of $Ug perpendicular to the zone axis z. In this
case we arrive at the modified Howie–Whelan
equations

oUg

oz
¼ 2pi

bg

ðkþ gþ sgÞ � sðRÞg Ug

� pi
X

g0
ð1� dgg0 Þ

U g�g0

bg

Ug0 ; ð6Þ

where bg = (k + g + sg)z.
In principle, solving Eq. (5) numerically requires

integrating these equations along the characteristics
defined by the directions of propagation of diffrac-
tion beams k + g + sg. The algorithm developed
here replaces propagating solutions along the char-
acteristics by a sequence of two-step events, where
the first step involves solving the modified Howie–
Whelan equations (6) for a thin slice within a set
of adjacent narrow columns, and the second step
corrects the solution for the effect of inclined prop-
agation of the beams by means of interpolating
between values found at the first step for the adja-
cent columns. It can be proven [10] that in the limit
of small slice thickness and small column width a
solution found using the propagation–interpolation
algorithm is equivalent to the solution found by
integrating the Howie–Basinski equations.

What are the advantages of the approach
described above over the existing methods of image
simulations [9,3]? On the one hand, the new algo-
rithm makes it possible to simulate images of
three-dimensional defect structures (see, e.g. [2])
while the earlier solutions of the Howie–Basinski
equations only addressed the case of infinite straight
dislocations [9]. In comparison with the multislice
algorithms [3] the method is more flexible and is
able to use as input the distortion field oRi/oxj

evaluated using either linear elasticity or atomistic
simulations. Also, the structure of Eq. (5) makes it
possible to select, at the start of a simulation, a set
of g-vectors that contribute to the formation
of the image, therefore avoiding using a large num-
ber of virtual reflections required for carrying out
a multislice simulation. Last but not least, the sim-
plicity of the propagation–interpolation algorithm
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