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a b s t r a c t

Accurate prediction of the discharge rate from hoppers is important in many industrial processes

involving the handling of granular materials. The present work investigates the parameters affecting the

discharge rate of a wet cohesive system from a quasi-3-D, rectangular hopper using the discrete element

method (DEM). The cohesion between the particles is described by a pendular liquid bridge force model

and the strength of the cohesive bond is characterized by a Bond number. The Beverloo correlation is

applied to cohesive systems by modifying the Beverloo constant as a function of Bond number. The

predictions obtained from this modified correlation fit the simulation data reasonably well. In addition,

the effect of hopper angle in cohesive systems is shown to follow a trend similar to cohesionless

systems, where the discharge rate is insensitive to changes in hopper angle except below a critical angle

(with respect to the vertical) where the discharge rate increases rapidly. This critical angle of flow

decreases with increasing cohesion.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Hoppers are widely used during the processing and handling of
granular materials. One of the major industrial problems in using
hoppers is obtaining reproducible and consistent particle dis-
charge flow rates, which is associated with the complex flow
patterns of granular materials inside the hopper. Cohesive
granular materials further complicate this problem and make
difficult the accurate prediction of discharge rate which is
necessary for the dependable design and operation of hoppers.

In this work, a physically meaningful computational approach
is developed for predicting the discharge behavior of wet,
cohesive, mono-disperse granular materials from a rectangular
hopper. Specifically, a rectangular, wedge-shaped hopper is
chosen for studying the discharge behavior of particle systems
in the presence of liquid bridges. Different parameters that may
affect the discharge rate are studied including the degree of
cohesion (characterized by the Bond number and liquid content),
hopper angle and outlet width. Discrete element method (DEM)

modeling, which has become a common approach for studying
such problems, is used as the tool for investigating the effect of
these parameters. DEM models consider the granular material to
be a collection of discrete solid particles which move according to
Newtonian mechanics.

Previous work by Anand et al. (2008) investigated hopper
discharge rate with cohesionless particles. The application of DEM
to this problem significantly enhanced the understanding of the
particle and hopper properties affecting the discharge rate. For
example, in a cohesionless system the coefficient of restitution,
hopper width and particle diameter have negligible effect. Also,
the DEM results compared favorably with the predictions from
various experimental correlations reported in the literature for the
effects of hopper angle, outlet width and particle size distribution
on discharge rate. In this present study, we probe the discharge
rate in a wet, cohesive system by including the cohesive model of
Mikami et al. (1998) in the DEM code described in Anand et al.
(2008).

2. Background

Cohesion is the attractive force between particles, and if
cohesion is significant, substantial deviation from the free-flowing
behavior of particulate systems is evident. Cohesion between
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particles can originate from several sources including van der Waals
forces, electrostatic forces, and liquid bridges (capillary forces). For
particles larger than several hundred microns, which are also free of
electrostatic charge, the most important source of cohesion is liquid
bridges (Seville et al., 2000). This cohesion force is the focus of this
study.

When a quantity of liquid is introduced between particles,
various regimes of liquid distribution are possible, depending
upon the degree of saturation. These are the pendular, funicular,
capillary and droplet regimes. For low liquid content, pendular
liquid bridges are formed as shown in Fig. 1. With pendular liquid
bridges, the interaction between the particles is always binary.
As the liquid content increases, the liquid bridges are not
independent of each other and the pendular liquid bridges begin
to merge as the system transitions to the funicular and capillary
regimes. At very high liquid content, the droplet regime is reached
and the particles are essentially immersed in the liquid. For the
present study, we only consider the pendular regime.

3?A3B2 tlsb=-0.02w?>The stable, smooth liquid bridge formed
between two spherical particles results in an attractive force
between them. This force, in the case where gravitational
distortion of the liquid bridge is negligible, contains two
components: (1) the axial component of the surface tension
acting on the three-phase contact line, and (2) the hydrostatic
force due to the pressure deficiency in the bulk of the liquid.

The theoretical analysis of such a liquid bridge force has been
the focus of previous studies (see, for example, Mehrotra and
Sastry, 1980; Lian et al., 1993; Willett et al., 2000). Lian et al. (1993)
derive the liquid bridge force as a function of the surface tension,
half-filling angle, contact angle, and particle radius. However, to
implement this force model into a DEM code in a computationally
efficient manner, an explicit relationship between the force, liquid
bridge volume, and contact angle and particle separation distance
is needed. The regression expressions generated by Mikami et al.
(1998) provide just this sort of relation. Mikami et al. (1998)
developed a dimensionless cohesive force correlation for a
pendular bridge spanning two equal-sized spheres as a function
of the liquid volume and particle separation distance:
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where g is the surface tension of the liquid, R is the radius of the
sphere, b is the contact angle of the liquid with the particle, h is the
separation distance, and V is the liquid volume associated with the
liquid bridge. The constants A–C are dimensionless regression
parameters. Mikami et al. (1998) also presented similar regression
expression for a sphere-wall liquid bridge interaction.

Another important parameter for the liquid bridge force
between particles is the bridge rupture distance hrupture. The
rupture distance is the maximum separation distance between
the particles for which the liquid bridge is stable. Experiments by
Mason and Clark (1965) show that the rupture distance for any
meridianal profile of the liquid bridge varies linearly with contact
angle b and V1/3. Additional theoretical considerations by Lian
et al. (1993) have yielded the following specific relationship
between the rupture distance and the liquid bridge volume and
the contact angle:

hrupture ¼ ð1þ0:5bÞV1=3 ð5Þ

In addition to the liquid bridge force, particles are subject to a
viscous, resistance force Fvf resulting from the squeezing out and
pulling in of liquid between the two closely spaced particle
surfaces. Assuming rigid spheres, the viscous squeeze film force in
the normal direction is:

Fvf ¼ 6pZR�vn
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where Z is the viscosity of the liquid, vn is relative speed between
the particles, and R* is the effective particle radius (Lian et al.,
1998). A minimum value for h, corresponding to the combined
asperity height of the two surfaces, in this case equaling 1/100th
of the smaller particle diameter, is employed to keep the viscous
force bounded. It has been observed in this work and in the work
by McCarthy (2003) that the results are insensitive to a two order
change in the magnitude of the chosen asperity value. A similar
tangential viscous force may also be derived, but previous studies
have shown that this force has a negligible effect on particle
motion (Hsiau and Yang, 2003). The typical value of the liquid
bridge force in the current simulations is 50 dyn whereas the
typical value of the viscous force is 4–5 dyn, which is at least an
order of magnitude less than the liquid bridge force.

An important parameter for characterizing the relative cohe-
siveness of a system is the Bond number, Bo, which is defined as
the ratio of the maximum cohesive force acting on a particle, Fc, to
the gravitational force acting on the particle, W:

Bo¼
jFC j

W
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where g is the surface tension of the liquid, R is the radius of the
particle, r is the density of the particle, and g is gravitational
acceleration (Nase et al., 2001). As the Bond number of the system
increases, the cohesiveness of the system increases. For example,
Bo=0.25 represents a maximum cohesive force on a particle that is
25% of the particle’s weight.
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Fig. 1. Representation of the liquid bridge formed between particles of equal size.
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