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a b s t r a c t

In this paper we propose an analytical formulation of the dynamical behaviour of complex and open

physical systems which is formulated on the total thermodynamic phase space using the contact form

associated with Gibbs’ relation. Starting from balance equations we construct control contact systems

by using the entropy function to represent the thermodynamic properties. The contact Hamiltonian

function generating the dynamical behaviour has then the units of an entropy variation. We consider

complex thermodynamic systems, described by compartmental systems, and we construct the

associated control contact system by composing the control contact formulation of every compartment.

The contact Hamiltonian functions generating the dynamical behaviour are discussed with respect to

two alternative formalisms used for describing coupled sets of reversible and irreversible processes,

namely the GENERIC formulation and the Matrix formulation. This analysis is then illustrated on the

elementary example of a coupled mechanical and thermodynamic system.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Physics-based control design is an approach for the control of
physical systems for which a growing interest has risen in the
recent years. The design of the control systems is based on
the understanding of the physical phenomena that give rise to the
dynamical behaviour. For electro-mechanical systems, this
approach has been largely studied with the use of the Lagrangian
or Hamiltonian formalism. However with regard to chemical
processes and more generally to thermodynamic systems in the
large (i.e. systems where reversible and irreversible phenomena
take place), this area is only in its early stages. Some results in
interpreting physical properties in terms of nonlinear dynamical
system theory and control have been already achieved. For
instance quantities related to the entropy (e.g. the entropy itself,
the entropy production, the availability) have been considered as
Lyapunov function candidates (Alonso and Ydstie, 2001; Favache,
2009; Favache and Dochain, 2009a, b; Ydstie, 2002). In this paper
we shall develop an analytical formulation adapted to modelling
thermodynamic systems with the perspective of formalizing the
previous results and extend them in a systematic way.

The modelling of complex transport phenomena as they arise
in the analysis of rheological fluids, multiphase fluids, meteor-
ological systems for instance, is greatly enhanced by the use of
structural properties associated with the basic physical modelling
assumptions. They result from the main physical modelling
assumptions that encompass the formulation of conservation
laws, the thermodynamic properties of matter and the reversible
and irreversible phenomena. This leads to dynamical behaviours
that possess dynamical invariants or preserve some geometric
structures for instance whose flows are symplectic transforma-
tions. The main issue is to express the dynamical equations in
such a way to explicitly embed the physical properties. Consider-
ing for instance complex fluids, the aim is to embed the
thermodynamic properties of the fluid, as well as the structure
of the fluid dynamics and the irreversible phenomena in the
formulation of the dynamical system. The thermodynamic
properties are captured in the definition of one or several
thermodynamic functions (such as the internal energy or any of
its Legendre transformations). The reversible processes are
captured in the definition of some differential geometric struc-
tures such as Poisson brackets (for mechanical systems or fluid
dynamics) (Arnold, 1989; Olver, 1993) and the irreversible
processes are defined using a symmetric bracket (Grmela and
Öttinger, 1997; Ortega and Planas-Bielsa, 2004). Physical systems
subject simultaneously to reversible and irreversible processes
are expressed as the sum of gradient and pseudo-Hamiltonian
dynamical systems (Dalsmo and van der Schaft, 1999; Grmela and
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Öttinger, 1997; Öttinger and Grmela, 1997). In order to include
the interaction with their environment (i.e. open systems), or for
their control, these systems have been extended in two ways. A
first extension consists in rendering the Hamiltonian functions or
the generating potential of gradient systems depending not only
on the state but also on some input variables (Cortés et al., 2005;
van der Schaft, 1989). The second extension consisted in the
description of the interaction with the environment, in terms of a
geometric structure called Dirac structure (Courant, 1990), a
generalization of the Poisson bracket, defined on manifolds
including the input and output spaces (Dalsmo and van der
Schaft, 1999; van der Schaft and Maschke, 1995; Yoshimura and
Marsden, 2006).

In this paper we suggest to use an alternative formulation,
based on contact forms, another geometrical structure, arising
from the differential geometric formulation of the thermody-
namic properties of matter as it has been developed in
Carathéodory (1909) and Mruga"a et al. (1991) according to the
geometrical definition suggested by Gibbs (1873b). Recent work
has shown that the same structure might be used in order to
describe reversible thermodynamic transformations (Mruga"a,
2000) and irreversible dynamical processes (Eberard et al.,
2007; Grmela, 2002b; Grmela and Öttinger, 1997). In the present
paper we propose a formulation based on the entropy form of
Gibbs’ equation and suggest a general formulation of a class of
compartmental systems as the composition of elementary
models.

In order to discuss the advantages of the suggested contact
formulation, we shall analyze two alternative formal frameworks
for modelling thermodynamic systems: the GENERIC formalism
(general equation for the non-equilibrium reversible-irreversible
coupling) by Grmela and Öttinger (1997) and Öttinger and Grmela
(1997) as well as the Matrix formalism developed by Jongschaap
(2001) and Jongschaap and Öttinger (2004).

In Section 2 we shall recall the definition of the contact
structure associated with a thermodynamic system and the
definition of reversible and irreversible systems on this structure
using contact vector fields. We shall also show how one may
formulate open thermodynamic systems in this framework. In
Section 3, after a brief exposition of the GENERIC and Matrix
formalisms, we shall show how they can be related to the contact
formulation. Section 4 illustrates the contact formalism in
comparison with GENERIC and Matrix by considering the simple
example of a gas-piston system also treated in Jongschaap and
Öttinger (2004).

2. Contact formulation of open and irreversible systems using
the entropy

In this section we first recall how the geometric definition of
the thermodynamic properties of simple systems introduced by
Gibbs (1873a) using tangent planes is formalized in a differential-
geometric way using Pfaffian equations and the contact geometry
(Arnold, 1989; Carathéodory, 1909; Herman, 1973). Secondly we
recall how the reversible and irreversible transformations of a
thermodynamic system may be expressed by a contact vector
field generated by some contact Hamiltonian function defining
the transformation (Eberard et al., 2007; Grmela, 2002b; Mruga"a,
1993, 2000). However we shall depart from the cited work in the
sense that we shall use the fundamental thermodynamic equation
in terms of the entropy function instead of the energy function.
Thirdly we shall consider complex thermodynamic systems, in the
sense of compartmental systems, and show that the contact
systems of every subsystem may be composed to obtain the
contact system of the complex system.

2.1. Gibbs’ relation in the thermodynamic phase space

Let us first consider a simple thermodynamic system1 (Callen,
1960) consisting of a mixture of N chemical species. Its
thermodynamic properties may be described in the thermody-
namic phase space composed of 2dþ1 state variables, where
d¼Nþ2. They are composed of dþ1 extensive quantities (the
internal energy U, the volume V, the number of moles ni of
the species i¼1,: :,N, the entropy S) and d intensive quantities
(the pressure P, the temperature T and the chemical potential mi

of the species i). If several chemical species are present in the
subsystem, then we denote by n and m the N-dimensional vectors
with entry i for each species. According to the Gibbs’ phase
theorem, only d of these quantities are independent since they
have to obey Gibbs’ relation:
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The thermodynamic properties may be derived from a funda-

mental thermodynamic equation (Gibbs, 1873a) relating the set of
extensive variables and which may be defined in an equivalent
way as the energy function: U ¼ ~UðS,V ,nÞ or preferably in this
paper, the entropy function:

S¼ ~SðU,V ,nÞ ð2Þ

The d dependent quantities are then obtained by writing the
differential of the entropy function (2):
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Hence the entropy conjugate variable to the internal energy, to
the volume and to the number of moles ni of species i are 1/T, P/T
and �mi=T , respectively.

This thermodynamic perspective may be extended in order to
include other physical domains, the mechanical domain if the
system or some part of it undergoes some motion, or the
electromagnetic domain if some species are charged for instance.

In his work, Gibbs developed a geometrical approach of
thermodynamics (Gibbs, 1873a, b). The fundamental relation (2)
of a subsystem can be represented by an hypersurface in a (dþ1)-
dimensional space of the extensive variables. This hypersurface is
called the thermodynamic surface. The relation (3) indicates that
the intensive variables define the tangent hyperplanes to the
thermodynamic surface. Actually the structure of Gibbs’ relations
(1) endows the thermodynamic phase space with a canonical
geometric structure, called contact structure, in the same way as
Lagrangian and Hamiltonian formulations endow their state space
with a symplectic form or Poisson bracket (Arnold, 1989; Herman,
1973). In the remainder of this paragraph we shall briefly recall
some basic notions of contact geometry useful for thermodynamic
systems and refer the reader to the books (Arnold, 1989; Herman,
1973) for a detailed mathematical exposition and to Chen (1999),
Eberard (2006), Mruga"a (1978), and Mruga"a et al. (1991) for the
application to equilibrium thermodynamics. For the sake of
simplicity we shall restrict ourselves to a presentation in some
coordinates and hence identify the thermodynamic phase space
with the real vector space T ¼R2dþ1,dAN.

Gibbs’ relation and the definition of the equilibrium thermo-
dynamic properties have been defined in a differential-geometric
way in the fundamental paper of Carathéodory (1909) who
formulated them in terms of a Pfaffian equation. This Pfaffian
equation is expressed in terms of a 1-form, called contact form,
which in a set of canonical coordinates ðx0,x1, . . . ,xd,p1, . . . ,pdÞ is

1 I.e. a macroscopically homogeneous, isotropic and uncharged system.
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