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a b s t r a c t

The continuum mechanical approach for deriving the generalized equations of multicomponent

diffusion in fluids is described here in detail, which is based on application of the principle of linear

momentum balance to a species in a mixture, resulting in the complete set of diffusion driving forces.

When combined with the usual constitutive equations including the continuum friction treatment of

diffusion, the result is a very complete and clear exposition of multicomponent diffusion that unifies

previous work and includes all of the various possible driving forces as well as the generalized

Maxwell–Stefan form of the constitutive equations, with reciprocal diffusion coefficients resulting from

Newton’s third law applied to individual molecular encounters. This intuitively appealing and rigorous

approach, first proposed over 50 years ago, has been virtually ignored in the chemical engineering

literature, although it has a considerable following in the mechanical engineering literature, where the

focus, naturally, has been physical properties of multiphase fluid and solid mixtures. The described

approach has the advantages of transparency over the conventional approach of non-equilibrium

thermodynamics and of simplicity over those based on statistical mechanical or kinetic theory of gases

or liquids. We provide the general derivation along with some new results in order to call attention of

chemical engineers to this comprehensive, attractive, and accessible theory of multicomponent

diffusion in fluids.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of multicomponent diffusion and its various driving
forces is treated in a large number of chemical engineering books
and articles (of necessity, only representative publications are
cited here), e.g., for: (1) fluids of different state of aggregation, i.e.,
in gaseous, liquid, electrolyte, polymer, and colloidal solutions
(Bird et al., 2002; Curtiss and Bird, 1996, 1999; Cussler, 1976,
1997; Deen, 1998; Kerkhof and Geboers, 2005a, 2005b; Kuiken,
1994; Lightfoot, 1974; Newman, 1991; Slattery, 1981, 1999;
Taylor and Krishna, 1993; Tyrrell and Harris, 1984; Wesselingh
and Krishna, 1990); (2) porous media (Do, 1998; Jackson, 1977;
Mason and Malinauskas, 1983; Mason et al., 1967; Whitaker,
1986, 1999); and (3) membranes (Datta et al., 1992; Mason and
Lonsdale, 1990; Spiegler, 1958; Thampan et al., 2000). Although
this general multicomponent diffusion theory is being increas-
ingly utilized in the rigorous analysis of many chemical
engineering mass transport problems (Amundson et al., 2003;
Bird et al., 2002; Cussler, 1997; Datta and Rinker, 1985; Jackson,
1977; Krishna, 1987c; Krishna and Wesselingh, 1997; Lightfoot,

1974; Taylor and Krishna, 1993; Thampan et al., 2000; Wang
and Datta, 1986), starting with the early work of Toor (1957) and
Stewart and Prober (1964), its application is still somewhat
limited. We feel that a reason for this is the lack of a clear
exposition of the underlying principles of the multicomponent
diffusion theory.

The conventional derivation of multicomponent diffusion in
continua based on the non-equilibrium, or irreversible, thermo-
dynamics, IRT (Bird et al., 2002; Curtiss and Bird, 1999; de Groot
and Mazur, 1962) can be mystifying (Cussler, 1997), while that
based on statistical mechanical or kinetic theory of gases
(Hirschfelder et al., 1964) or liquids (Bearman and Kirkwood,
1958; Snell et al., 1967) can be intimidating and, thus, not
generally discussed at length in the chemical engineering under-
graduate or graduate curricula. As a result, the origin and the basis
of the rather complex equations of multicomponent diffusion
remain obscure to most chemical engineers. It is our purpose
here, therefore, to provide their derivation based on the more
transparent approach of species linear momentum conservation
(Snell and Spangler, 1967; Truesdell, 1957, 1962), involving a
balance of diffusion ‘‘drag’’ and diffusion ‘‘driving forces,’’ and
grounded in the familiar principles of the subject of continuum
Transport Phenomena (Bird et al., 2002). Also provided are some
clarifications and new results. The derivation provides very
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general results and without some of the approximations inherent
in the other approaches.

The diffusive flux equations in multicomponent mixtures are
typically written in two alternate forms, i.e., either in: (1) the
generalized Fick–Onsager (GFO) form (Onsager, 1945), a general-
ization of Fick’s law (Fick, 1855), in which the diffusive flux of a
species i is written as a linear combination of the diffusion ‘‘driving
forces’’ dj for all species (Fitts, 1962) or in (2) the generalized
Maxwell–Stefan form (GMS) (Lightfoot et al., 1962; Maxwell,
1866, 1868; Stefan, 1871) in which the diffusion driving force for
the ith species di is written as a linear combination of the fluxes of
all species. Owing to the assumed linearity between flux and driving
forces, the GFO and the GMS forms are, in fact, interconvertible
through the use of linear algebra (Bearman, 1959; Fitts, 1962).
Alternatively, the continuum frictional approach (Laity, 1959;
Lamm, 1957; Spiegler, 1958) provides expressions in the form of
the GMS equations but involves frictional, or impedance, coeffi-
cients, zij, rather than the GMS binary diffusion coefficients, Dij.

The generalized diffusion driving force for the ith species di

comprises not only the usual composition gradient, but also
thermal and pressure gradients, stresses, as well as external body
forces. The usual approach to obtaining these different driving
forces is that of non-equilibrium, or irreversible thermodynamics,
i.e., IRT (de Groot, 1951; de Groot and Mazur, 1962; Eu, 1992;
Fitts, 1962; Haase, 1969; Kuiken, 1994; Lightfoot, 1974; Merk,
1959; Yao, 1981); starting with the entropy balance (Jaumann,
1911), and incorporating in it the equations of mass, momentum,
and energy balance. An inspection of the resulting entropy
production term shows it to be a sum of the products of fluxes
and driving forces, thus identifying the various diffusion driving
forces contained in di. The IRT approach furthermore utilizes the
linearity postulate, i.e., that the flux of a species involves a linear
combination of the driving forces of all species dj (Bird et al.,
2002). The results are applicable to any mixture, although the
transport coefficients are treated as phenomenological coeffi-
cients satisfying certain symmetry, i.e., the Onsager reciprocal
relations (ORR) (Monroe and Newman, 2006), and other con-
straints. A criticism of the IRT theory is provided by Truesdell and
others (Truesdell, 1984), e.g., its assertion of a lack of coupling
between mass and viscous dissipation fluxes and forces, owing to
their different tensorial rank based on the postulate of Curie, and
the seemingly arbitrary choice for the reference frame for flux.

The equations of multicomponent diffusion for gases, on the
other hand, are derived based on the Chapman–Enskog approach
(Chapman and Cowling, 1970; Eu, 1992; Ferziger and Kaper,
1972; Hirschfelder et al., 1964) to the solution of the Boltzmann
equation, involving the assumption of linear deviations from the
equilibrium Maxwell–Boltzmann distribution function for com-
ponent i, in the form of a perturbation function, that provides both
the different diffusion driving forces, i.e., concentration and
pressure gradient and external forces, as well as the Maxwell–
Stefan constitutive equation along with predictive expressions for
the diffusion coefficients involved. The alternate approach for
gases is the Grad–Zhdanov theory (Grad, 1949; Zhdanov et al.,
1962), in which the distribution function for component i is
written as a product of the equilibrium distribution function and a
series of Hermite polynomials, and moments of the Boltzmann
equation are generated for species i. The final result is modified
expressions for the diffusion coefficients and the appearance of a
stress term in the diffusion driving force that is absent in the
Chapman–Enskog theory as well as in IRT. The Grad–Zhdanov
theory also forms the starting point for the derivation of the
Dusty-Gas Model (DGM) for gaseous transport in porous media
(Cunningham and Williams, 1980; Mason et al., 1967; Kerkhof,
1996; Weber and Newman, 2005). The DGM has, unfortunately,
also so far seen rather limited use in chemical engineering

applications (Abed and Rinker, 1973; Datta et al., 1992; Datta and
Rinker, 1985; Kaza and Jackson, 1980; Krishna, 1987b; Skrzypek
et al., 1984; Suwanwarangkula et al., 2003; Thampan et al., 2001;
Wang and Datta, 1986).

For the case of monatomic liquids, Bearman and Kirkwood
(1958) derived the complete multicomponent diffusion equations
in the form of partial momentum balance of species i from
statistical mechanics of molecular dynamics based on the
Liouville equation. They determined the perturbation in distribu-
tion functions due to departure from equilibrium and provided
formal integral equations for transport coefficients. The Bearman–
Kirkwood theory forms the starting point for the derivation of the
Dusty-Fluid Model (DFM) for liquid transport in porous media and
in membranes (Mason and Lonsdale, 1990; Mason and Viehland,
1978). The DFM has also seen only rather limited application so
far (e.g., Noordman et al., 2002; Thampan et al., 2000; Syed and
Datta, 2002). Curtiss and Bird (1996) have extended the Bearman–
Kirkwood theory to polymeric liquids.

An alternate approach that has received scant attention in the
chemical engineering literature, with few notable exceptions
(Curtiss and Bird, 1996; Whitaker, 1986), although it is well-
known in the mechanical engineering literature as the ‘‘Theory of
Mixtures’’ (Bowen, 1976; Green and Naghdi, 1967) and applied to
multiphase fluid and solid mixtures, is the theory of diffusion
based on the linear momentum balance of species (Atkin and
Craine, 1976b; Bowen, 1967; Müller, 1968; Snell and Spangler,
1967; Stefan, 1871; Truesdell, 1957, 1962, 1984; Truesdell
and Toupin, 1960; Williams, 1958). This is unfortunate, since
it provides a remarkably complete description of the various
diffusion driving forces based on more readily understood
continuum mechanical arguments. After all, diffusion involves
relative ‘‘motion’’ of a species in response to driving ‘‘forces.’’ It,
therefore, stands to reason that a reliable description of diffusion
should result from species linear momentum balance.

When combined with the ‘‘frictional drag’’ model, another well-
accepted continuum mechanical model, it provides an inherently
consistent and detailed description of multicomponent diffusion in
fluid mixtures, involving both the various driving forces as well as
the constitutive equations of the Maxwell–Stefan form. Of course, the
transport coefficients are not predicted accurately by this elementary
approach, for which one must resort to molecular theories (Reid
et al., 1987) or experiments, although the right forms of expressions
result (Furry, 1948; Maxwell, 1868; Ramshaw, 1993; Williams,
1958). Since the molecular theories (Hirschfelder et al., 1964;
Kerkhof and Geboers, 2005a; Snell et al., 1967; Zhdanov et al.,
1962) differ primarily in this regard, they are complementary, rather
than competitors, to the continuum mechanical theory. Additionally,
the constraints on the constitutive equations imposed by the
Clausius–Duhem entropy inequality have been discussed at length
in the mechanical engineering literature (Samohýl and Šilhavý,
1990). A limitation of a purely mechanical theory such as this is, of
course, its inability to predict chemical mechanisms of diffusion.
Thus, a notable exception is the Grotthuss mechanism (Choi et al.,
2005; Grotthuss, 1806) for the anomalous proton diffusion, which,
incidentally, predates Fick’s law (Fick, 1855) by half a century!

The purpose of this paper, thus, is to provide a complete and
self-contained derivation of the multicomponent diffusion equa-
tions based on the principle of linear species momentum balance
along with the application of Newton’s third law in an elementary
treatment of frictional encounters among constituent molecules.
This approach provides the most complete form of multicompo-
nent diffusion equations available in the literature, derived
normally via more esoteric means inaccessible to the nonspecia-
list, along with some additional new details. The simplicity of the
approach and the underlying principle would hopefully encourage
its further usage in chemical engineering education and research.
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