

available at www.sciencedirect.com

Characterization of precipitation behaviors in a nonstoichiometric Cu-24.5at.%Al-19.4at.%Mn alloy

S.C. Jeng*

Department of Mechanical Engineering, Technology and Science Institute of Northern Taiwan, 2 Xueyuan Rd., Taipei 112, Taiwan, ROC

ARTICLE DATA

Article history: Received 20 September 2010 Received in revised form 20 November 2010 Accepted 26 November 2010

Keywords: Scanning and transmission electron microscopy γ -brass type L-J β -Mn $Cu_{3-x}Mn_xAl$ alloys

ABSTRACT

Scanning and transmission electron microscopy examinations of Cu-24.5at.% Al-19.4at.% Mn (similar to Cu_{2.2}Mn_{0.8}Al) alloy were performed after aging at temperatures ranging from 350 °C to 700 °C for various durations. It was observed that only γ -brass type and L-J phases were formed after aging at or below 400 °C. On the other hand, the β -Mn phase was formed after aging at temperatures ranging from 500 °C to 650 °C. It is noteworthy that the precipitation behaviors of the γ -brass type and β -Mn phases are different at different aging temperatures. This remarkable result differs from those reported in previous studies on the Cu_{3-X}Mn_XAl alloys with X \leq 1.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many studies have focused on phase decomposition in Cu-Al-Mn ternary alloy systems [1–12]. These studies have revealed that when $Cu_{3-X}Mn_XAl$ alloys are quenched from a high-temperature β-phase (disordered b.c.c.) region, they undergo either a $\beta \to B2 \to (D0_3 + L2_1)$ phase transition sequence with $0.4 \le X \le 0.8$ or a $\beta \to B2 \to L2_1$ two-stage ordering transition with X=1 [2,6–8]. In addition, many studies have focused on phase precipitation in $Cu_{3-X}Mn_XAl$ alloys, particularly that in the Cu_2MnAl alloy, through X-ray diffraction, electron microprobe, resistometry, and magnetometry analyses [4,5,9–12]. These studies have revealed that γ -brass type, T- Cu_3Mn_2Al , and β -Mn phases are formed at grain boundaries or on other structural defects in the Cu-Al-Mn alloy systems after aging at temperatures ranging from 360 °C to 700 °C [5,9,10].

However, a previous study [13] reported that an L-J phase with two variants existed within the $(D0_3+L2_1)$ matrix in an asquenched and aged $Cu_{2.2}Mn_{0.8}Al$ alloy. The L-J phase has

an orthorhombic structure with lattice parameters a=0.413 nm, b=0.254 nm. and c=0.728 nm. And the orientation relationship between the L-J phase and (DO3+L21) matrix was also determined to be $(100)L - J//(0\overline{1}1)m$, $(010)L - J//(1\overline{1}1)m$, and $(001)L - J//(1\overline{1}1)m$ (211)m. Meanwhile, the rotation axis and angle pairs between two variants of the L-J phase were [021]_{L-J} and 90°. Furthermore, when the as-quenched $Cu_{2,2}Mn_{0,8}Al$ alloy was aged at 350 °C for a moderate duration, it was found that the matrix exhibited a welldeveloped (D03+L21) modulated microstructure and that the γ -brass type phase precipitated at the a/2 < 100 > anti-phaseboundaries (APBs) in the early stage. Subsequently, after aging at 350 °C, the γ -brass type precipitates preferentially grew further with aggregations along the <100>crystallographic direction. Here, it is important to note that other studies on $Cu_{3-x}Mn_xAl$ alloys with X<1 have not yet reported the precipitation behavior and coexistence of (D0₃+L2₁+L-J+ γ -brass type) phases within the miscibility gap [14]. Although many studies have clarified the phase decomposition of the Cu₂MnAl Heusler alloy [5,10-12], few have clarified the precipitation behaviors and microstruc-

^{*} Tel.: +886 2 28927154; fax: +886 2 2893 5259. E-mail address: sccheng@tsint.edu.tw.

tural changes in $\text{Cu}_{3-X}\text{Mn}_X\text{Al}$ alloys with X<1 [4,8]. Therefore, this study investigates the precipitation behavior and the corresponding microstructural change in $\text{Cu}_{2.2}\text{Mn}_{0.8}\text{Al}$ alloy at temperatures ranging from 350 °C to 700 °C by means of scanning and transmission electron microscopy. Consequently, some unique precipitation behaviors are reported, and these differ from those reported in other studies through X-ray diffraction electron microprobe, resistometry, and magnetometry analyses of $\text{Cu}_{3-X}\text{Mn}_X\text{Al}$ alloys with X<1.

2. Experimental Procedures

The Cu-24.5at.%Al-19.4at.%Mn alloy (similar to Cu_{2.2}Mn_{0.8}Al) was prepared in an induction furnace under a protective argon

atmosphere by using 99.9% copper, 99.9% manganese, and 99.97% aluminum. The melt was chill cast into a copper mold. After being homogenized at 850 °C for 72 h, 2-mm-thick ingots were cut from the alloy. These ingots were subsequently heat-treated at 850 °C for 1 h and then rapidly quenched in iced brine. Aging treatment was carried out at temperatures ranging from 350 °C to 700 °C for various durations in a vacuum heat-treated furnace, following which rapid quenching was carried out.

The scanning and transmission electron microscopy specimens were prepared by means of a double-jet electropolisher with a mixture of 70% methanol and 30% nitric acid as the electrolyte. The polishing temperature was maintained in the range from $-40\,^{\circ}\text{C}$ to $-30\,^{\circ}\text{C}$, and the current density was maintained in the range from 3.0×10^4 to 4.0×10^4 A/m². Scanning electron microscopy was performed using a JEOL 6500 F operating at 15 kV and transmission electron micros-

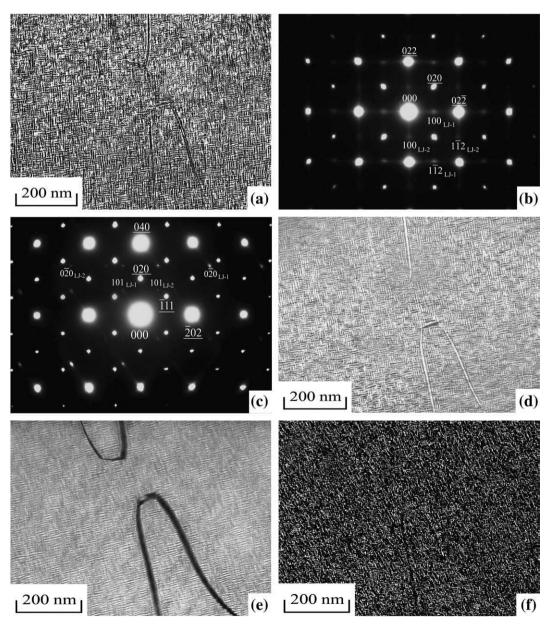


Fig. 1 – Electron micrographs of the as-quenched alloy. (a) BF, (b) and (c) two SADPs. The zone axes of the (D0₃+L2₁) matrix are [100] and [101], respectively (hkl: (D0₃+L2₁), hkl_{LJ-1, LJ-2}: corresponding to the variant 1 or 2 of the L-J phase), (d) and (e) are the (020) and $(\overline{1}11)$ (D0₃+L2₁) DF images, respectively. (f) the (100_{LJ-1}) L-J DF image.

Download English Version:

https://daneshyari.com/en/article/1571547

Download Persian Version:

https://daneshyari.com/article/1571547

<u>Daneshyari.com</u>