
Chemical Engineering Science 64 (2009) 501 -- 508

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.e lsev ier .com/ locate /ces

Analysis of breakage kernels for population balancemodelling

L.E. Patrunoa, C.A. Doraob, H.F. Svendsena, H.A. Jakobsena,∗

aDepartment of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
bDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

A R T I C L E I N F O A B S T R A C T

Article history:
Received 14 April 2008
Received in revised form 24 September 2008
Accepted 27 September 2008
Available online 17 October 2008

Keywords:
Population balance
Breakage kernel
Least squares method

The accurate prediction of droplet sizes is fundamental in many industrial applications. In order to be able
to simulate the evolution of a size distribution, suitable kernels should be used in the population balance.
In this paper we make use of four different breakage kernels in order to predict a size distribution and
compare the results among them as well as with experimental data. Two breakage kernels are derived
from inverse problems and the other two are derived from physical or empirical interpretations.
The Sauter mean diameter, a moments-based error and Gaussian shape factors were used to compare
between the resulting distributions.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The production of oil and gas plays a major role in the econ-
omy of many countries. Since the presence of a dispersed phase in
multiflow separators, transport pipings, rotating equipment or down
steam separation processes can provoke break down or create ero-
sion or degradation, a close to 100% phase separation is of major con-
cern. The physics of this separation process involves different phe-
nomena such as entrainment, deposition, coalescence and breakage
of the disperse phase resulting in complex polydisperse multiphase
systems.

The dispersed phase can be described statistically in terms of
the governing phenomena controlling the size distribution evolution
regardless of whether it consists of droplets in a gas, bubbles in a
liquid or other similar systems.

The complexity in the processes and phenomena governing the
changes of such systems makes the derivation of the correspond-
ing models a significant challenge. For that reason, practical ap-
proaches often end up in using semi-empirical correlations which are
problem and system specific. As an example of this, Ueda (1979) ap-
proximated the size distribution of droplets in the core of a pipe dis-
persed flow with a gamma distribution function, and then proposed
empirical equations for the mean diameter to find the flow rate of
the entrained droplets. On the other hand, Lucas et al. (2001) pre-
sented a study on bubble size distribution, in which simple models
for breakage and coalescence were used.
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When enough experimental information is available, an inverse
problem technique could present one alternative to improve the
existingmodels aswell as to derive new ones. The population balance
approach is found suitable in this type of problems since it allows
us to describe a dispersed phase by means of a density function. The
accurate prediction of the evolution of the density function relies
on the adequate modelling for the initial condition and the physical
model used for describing the interactions between the particles.

In the present article we focus only on breakage-dominant flows.
The breakage process can be described in terms of a breakage rate
function (b(�, t)) and a redistribution function (h(� → �)). The break-
age rate gives the frequency for the splitting of particles to occur
and the redistribution function describes the outcome of a split as
particles with property � produced in the breakage of particles with
internal coordinate �.

Despite the fact that significant modelling work has been carried
out during the last decades, the capability of most of the derived
models is limited to particular given cases (Dorao et al., 2007; Maa�
et al., 2007; Hinze, 1955; Kolmogorov, 1949). The adaptation of a
model to new cases will then demand its re-tuning usually leading
to the need for a completely new model. In this respect, one of the
simplest approaches is to apply an inverse problem analysis to the
data. A self-similarity approach to solve an inverse problem is shown
in the book by Ramkrishna (2000), and the use of the least squares
method on inverse population balance problems can be found in
Patruno et al. (2008).

The main goal of this work is to show the evolution of a density
function predicted with different breakage kernels and to compare
the modelling results with experimental data. Four intrinsically dif-
ferent breakage kernels are tested and the results are compared by
the shape of the size distribution and the mean diameter.
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Section 2 introduces the population balance equation (PBE) in
its breakage-dominant formulation and describes the breakage and
redistribution models used in this work. Section 3 briefly describes
the least squares method (LSM) used to solve the PBEs. Section 4
presents the results for the comparisons and finally Section 5 sums
up the main conclusions drawn from this work.

2. The PBE

Given a two phase system, we can consider it as homogeneous
at a certain level if enough stirring is provided. The system can then
be described only as two dimensional, taking one dimension in time
and another one in the internal property of the dispersed phase.
The property can be assumed to be represented by a continuous
density function f (�, t) with � being any property characterizing the
dispersed phase (e.g. droplet diameter, volume, mass, etc.) and t the
time coordinate. A detailed discussion of the population balance in
general can be found in Jakobsen et al. (2005). For this particular
work we choose � to represent the droplet diameter.

2.1. Breakage-dominant formulation

Considering only the breakage process and the redistribution of
daughter droplets, the mathematical description of the problem is⎧⎨
⎩

�f (�, t)
�t

= −b(�, t)f (�, t) + ∫ �=�max
�=� h(� → �)b(�, t)f (�, t) d� + g(�, t) in � = [�min,�max] × [0, tmax]

f (�, t) = f0(�) on �0 = �(t = 0)
(1)

with b(�, t) being the breakage kernel, h(� → �) the redistribution
probability, g(�, t) the source (or sink) term which can include en-
trainment (or deposition) and f0(�) the initial droplet distribution.

The first term in Eq. (1) on the right-hand side represents the
change in the population due to the loss of individuals by the break-
age processes, where b(�, t) is the breakage rate of the droplets of
type �. The second term on the right-hand side gives the change in
the population due to the arrival of new individuals with property
�. In the case of a breakage process, the breakage of particles of type
� will produce new particles according to the breakage yield or redis-
tribution probability, h(� → �). The third term is the droplets source
(entrainment) or sink (deposition).

To simplify the notation, we can define L as the population
balance operator such that

Lf (�, t) ≡ �f (�, t)
�t

+ b(�, t)f (�, t) −
∫ �=�max

�=�
h(� → �)b(�, t)f (�, t) d�

(2)

Then the mathematical problem is simplified to{
Lf (�, t) = g(�, t) in � = [�min,�max] × [0, tmax]

B0f (�, t) = f0(�) on �0 = �(t = 0)
(3)

with B0 being the identity operator. Since we are considering a
closed system (without any source or sink term) we take g = 0.

It is also possible to define the moments of the distribution, being
the nth moment operator defined as

Mnf (�, t) ≡
∫ �′=�

�′=�min
�nf (�′, t) d�′ (4)

2.2. Models for the breakage kernel

Many attempts to model the breakage kernel have been made
over the last years. Martínez-Bazán et al. (2002) give a meticulous
review of available models for particle breakup. It is important to

distinguish between kernels derived from physical models which can
reproduce the evolution of a particular system's probability density
function (PDF) (such is the case of Coulaloglou and Tavlarides, 1977;
Martínez-Bazán et al., 1999 or Luo and Svendsen, 1996), and those
derived from inverse problems (e.g. Sathyagal and Ramkrishna, 1996
or Patruno et al., 2008) which will simulate adequately the evolution
of a system only under the same physical properties and operating
conditions from which it was derived.

This work does not deal with Luo and Svendsen (1996) breakage
kernel because it can only be used in the moment formulation of
the PBE, and not in its particle size distribution form. A detailed
description of the two forms of writing the PBE is given in Jakobsen
(2008).

Even though the formalism shown in earlier literature for the PBE
can describe systems with time-dependent breakage, in the majority
of the breakage models already present in the literature we found
that the breakage kernel does not depend explicitly on the time
variable. Hence b(�, t)=b(�), although b(�) might depend on t through
a coupling with the hydrodynamic variables.

2.2.1. Coulaloglou and Tavlarides model
Coulaloglou and Tavlarides (1977) defined the breakage

frequency as the fraction of particles breaking divided by a

characteristic time, mathematically

b(�) =
(

1
breakage time

)(
fraction of

droplets breaking

)
= 1

tb

�F(�)
F(�)

(5)

the fraction of droplets breaking was modelled as

�F(�)
F(�)

= exp
(

−Ec
E

)
(6)

with Ec = c1��2 being the surface energy and E = c2��2/3�11/3 the
mean turbulent kinetic energy. They also assumed that the breakage
time was given by a turbulent turnover time

tb ∝ �2/3�−1/3 (7)

Combining Eqs. (5)–(7), they obtained the following expression

b (�) = k1

�2/3
exp

(
− k2

�5/3

)
(8)

in which k1 and k2 are empirical constants. Given these parameters
are known, this breakage kernel can be used to model the evolution
of a dispersed phase. In this paper we tuned the values of k1 and
k2 in such a way that the difference between experimental data and
simulations was minimized.

2.2.2. Martínez-Bazán model
Martínez-Bazán et al. (1999) proposed a breakage model for bub-

bles based on kinematic ideas (energy balance). The basic idea is
that for a droplet to be split, the turbulent stresses should overcome
the deformation energy to modify the surface. If viscous forces are
neglected, the confinement stress is defined as

	s = Ec
Volume

= 6Ec


�3
= 6

�
�

(9)
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