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a b s t r a c t

Compression of three-dimensional beds comprising 1000 plastically deforming initially spherical

granules is investigated by using the combined finite/discrete element (FE/DE) method. The material

model is formulated within the framework of multiplicative plasticity, and utilizes a density-dependent

elliptic yield surface that allows porous particles to both deform and to densify plastically, whereas only

volume-preserving plastic deformation is possible for nonporous ones. Granules with different

characteristics (yield stress and initial porosity) are studied, and the relationship between the single-

granule properties and the global compression behaviour of the granule bed is investigated. It is

demonstrated that the FE/DE method may shed light on the deformation and densification behaviour of

individual granules, since the size and shape of each granule are continually determined as an integral

part of the solution procedure, and that the method thus provides a comprehensive picture of the

processes occurring during confined compression of granular materials.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a considerable interest in mechanistic models
for pharmaceutical processes during recent years (see, e.g. , the
reviews by Kremer and Hancock, 2006; Ketterhagen et al., 2009).
Since the active pharmaceutical ingredient and various excipient
materials typically are handled and processed in powdered form
during pharmaceutical development and manufacturing, it is
evident that powder technology underlies many important unit
operations, especially for the generally preferred solid oral dosage
forms (tablets and tablet-like delivery vehicles). The most
versatile computational procedures that may be used to model
these processes are based on the distinct-particle approach, using
either the classical discrete (or distinct) element (DE) method
(Cundall and Strack, 1979) or the combined finite/discrete
element (FE/DE) method (Munjiza et al., 1995). Whereas forces
essentially are considered to be functions of the particle ‘‘overlap’’
in the DE method, the combined FE/DE method uses a more
involved particle description, with each particle being discretized
into finite elements. The additional internal degrees of freedom
enable a superior representation of particle deformation at the
price of a significantly higher computational cost.

The DE method has been used to investigate various aspects of
powder compression, such as particle rearrangement (Martin
et al., 2003), the effects of particle–size ratios (Skrinjar and
Larsson, 2004), and the relationship between single-particle

properties and the global compression mechanics of the powder
(Sheng et al., 2004; Hassanpour and Ghadiri, 2004). Its main
limitation is that the simplified particle description may be
unable to capture the deformation behaviour of the particles at
large strains.

The use of the FE/DE method in powder compression
simulations was pioneered by Ransing et al. (2000) and Gethin
et al. (2001). Since the size and shape of each particle are
continually determined as an integral part of the solution
procedure, this method has the potential to be very useful for
studying the deformation and densification of individual particles,
as has previously been done experimentally (Johansson and
Alderborn, 1996; Johansson et al., 1998). Knowledge of the
bonding surfaces between particles and the stresses/pressures
that act at these surfaces, opens up the possibility to study the
formation of coherent compacts in detail (Nyström et al., 1993).
However, the FE/DE method generally requires quite extensive
computational resources, and most studies (also recent ones, such
as those by Procopio and Zavaliangos, 2005; Choi and Gethin,
2009) have therefore been limited to two-dimensional systems.

We have recently described an efficient FE/DE procedure that
enables simulations of three-dimensional systems to be per-
formed, but have hitherto only reported results for elastic particles
(Frenning, 2008). The purpose of this work is to extend this
procedure to more realistic plastically deforming granules. To this
end, we first describe an appropriate constitutive model for the
granule behaviour, based on the elliptic yield surface proposed by
Doraivelu et al. (1984) and Oliver et al. (1996), which allows
porous particles to both deform and to densify plastically, whereas
only volume-preserving plastic deformation is possible for
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nonporous ones. The reason for introducing this rather elaborate
model is that porous granules often are encountered in pharma-
ceutical applications. Of particular relevance to this work are
granules produced by extrusion and spheronization, typically
using microcrystalline cellulose as starting material, that have
been extensively used by Alderborn and co-workers in experi-
mental studies of compression and compaction (Johansson and
Alderborn, 1996; Johansson et al., 1998; Nordström et al., 2008a,
2008b, among others). Simulation results are presented and
discussed, pertaining to compression of beds comprising 1000
granules with varying characteristics (yield stress and porosity).

2. Theory

2.1. Material model

2.1.1. Multiplicative plasticity

In conformity with the assumptions underlying multiplicative
plasticity (see, e.g. , the textbook by Simo and Hughes, 1998,
which is a good source for relevant background information, or
the article by Frenning, 2007, where a brief account of the theory
is given), a multiplicative decomposition of the deformation
gradient into elastic and plastic parts is postulated from the
outset. This decomposition takes the form

F ¼ FeFp; ð1Þ

where Fe and Fp are the elastic and plastic parts of the total
deformation gradient F. From a micromechanical point of view, Fp

may be considered as an internal variable that is related to the
amount of slipping, crushing, yielding, and plastic bending of the
constituents of the granules. The elastic response derives from a
free-energy function c, whereas the onset and direction of plastic
flow are controlled by a yield function f together with an
appropriate flow rule, as described below.

2.1.2. Elastic response

The elastic free-energy function is assumed to be of the
compressible neo-Hookean type (Zienkiewicz and Taylor, 2005,
pp. 161–163),

c¼ 1
2mð tr½b

e
��3ÞþUðJeÞ; ð2Þ

where

UðJeÞ ¼ 1
2lðJ

e�1Þ2�mlnJe: ð3Þ

Here, tr½be
� is the trace of the elastic left Cauchy–Green tensor

be
¼ FeFeT, Je ¼ det½Fe

� is the determinant of the elastic deforma-
tion gradient, and l and m are material constants that for small
strains may be identified as the Lamé parameters. The Kirchhoff
stress tensor s may be determined as (Simo, 1992)

s¼ 2
@c
@be be

¼ mbe
þ1

3hðJeÞ1; ð4Þ

where 1 is the second-order unit tensor. To simplify the
appearance of the above equation, we have introduced the
function

hðJeÞ ¼ 3JeU0ðJeÞ ¼ 3½lJeðJe�1Þ�m�; ð5Þ

where the prime denotes differentiation with respect to the
indicated argument.

2.1.3. Plastic response

We assume an elliptic yield function of the form proposed by
Doraivelu et al. (1984) and Oliver et al. (1996),

fðs;ZÞ ¼ Jdev½s�J 2þ1
3 a1ðZÞð tr½s�Þ2�2

3a2ðZÞs2
y ; ð6Þ

where Jdev½s�J is the norm of the deviator of the Kirchhoff stress
tensor, tr½s� is the trace of the same tensor and sy is the yield
stress. Moreover, a1ðZÞ and a2ðZÞ are functions of the relative
density Z. For a completely nonporous material ðZZ1Þ, these
functions attain the values a1ðZÞ ¼ 0 and a2ðZÞ ¼ 1, which means
that the yield function (6) reduces to the classical von Mises yield
condition. To be specific, the functions a1ðZÞ and a2ðZÞ are in this
work given by

a1ðZÞ ¼ cpð1�Z2Þ ð7Þ

and

a2ðZÞ ¼
Z2�Z2

c

1�Z2
c

; ð8Þ

where cp and Zc are positive constants (the above expressions

apply when Zo1, whereas a1ðZÞ ¼ 0 and a2ðZÞ ¼ 1 otherwise, as
already mentioned). Since tr½s� is proportional to the (negative)
pressure in the material, cp may be referred to as a pressure

coefficient. The constant Zc may be interpreted as the critical

relative density (percolation threshold), since the effective yield

stress seff
y ¼

ffiffiffiffiffiffiffiffiffiffiffi
a2ðZÞ

p
sy vanishes when Z tends to Zc from above.

The flow rule is assumed to be of the form (Simo, 1992)

Lvbe
¼�2 _g @f

@s
be; ð9Þ

where _g is a nonnegative consistency parameter and Lv is the Lie
derivative with respect to the spatial velocity field v (Marsden and
Hughes, 1994). By straightforward differentiation one finds that

@f
@s
¼ 2 dev½s�þ2

3a1ðZÞ tr½s�1 ð10Þ

and the rate of plastic volume change may therefore be
determined as (Simo, 1992)

dðlnJpÞ

dt
¼ _g tr

@f
@s

� �
¼ 2a1ðZÞ _g tr½s�; ð11Þ

where Jp ¼ det½Fp
�. When porous particles deform plastically, both

a1ðZÞ and _g are positive, and the time derivative of the plastic
volume change thus has the same sign as the trace of the
(Kirchhoff) stress tensor. This in turn implies that a positive
pressure (corresponding to a negative trace) results in a plastic
volume decrease. On the other hand, only volume-preserving
plastic deformation is possible for nonporous particles, since
a1ðZÞ ¼ 0 for these.

Elastoplastic models of the type outlined here are generally
solved by using a predictor–corrector procedure, with an elastic
predictor and a plastic corrector (when needed) (Simo and
Hughes, 1998). This solution procedure is referred to as a return
mapping, because the elastic predictor will—for plastic steps—

result in an inadmissible state of stress outside the yield surface,
which subsequently is mapped back onto the yield surface. The
steps required for the numerical integration of the elastoplastic
model are described in the appendix.

2.2. Contact detection and enforcement

During the course of multi-particle simulations, it is necessary
to detect contact between particles and to enforce the constraints
imposed by nonpenetrability and friction (in this work, Coulomb
friction was assumed between particles and between particles
and confining walls). A two-stage contact-detection algorithm
was used, as described in detail previously (Frenning, 2008).
During the first stage, spatial screening was used to identify all
particle pairs for which contact might occur. The detailed contact
check and enforcement were performed during the second stage.
Utilizing the fact that all particles were discretized by hexahedral
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