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Nuclear magnetic resonance (NMR) imaging was used to measure velocity and density profiles in 3-D
conical hoppers fed from an open vertical silo. Discharge of a 200�m-diameter powder in both mass and
plug flow was studied with hoppers of different half angles, of 10◦ and 80◦, respectively. An analytical
solution for compressible (variable density) mass flow in the 3-D axi-symmetric geometry was also
developed following the procedure outlined in Tardos (1997) and Tardos and Mort (2005). The density
variation and velocity profiles obtained experimentally were compared to predictions of this theory for
dense, compressible granular flows. We found, from both theory and experiment, that the powder has to
exhibit significant dilation (compressibility) as it is accelerated through the constriction in the hopper.
The degree of compressibility was found, experimentally, to be lower than that predicted by the mass
flow hopper theory. The powder unexpectedly exhibited a boundary layer with a fully-rough boundary
condition in the mass flow hopper. In the funnel-flow hopper, the expected “dead zone” was found
around the orifice and extended about one diameter length into the silo. The centerline velocity increased
according to an exponential function.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Despite major advances in the theory of powder statics and
dynamics, the rate of freely discharging powders from hoppers
cannot be computed theoretically with a precision better then a
factor of between two and four. For the case of very fine and co-
hesive powders such effects as the influence of the interstitial gas
and adverse pressure gradients across the outlet make the prob-
lem much more complicated and some deviation form theoretical
calculations is acceptable. However, for cohesion-less materials of
relatively large size (well above 100�m in diameter) and mostly
spherical shape where the problem should be straightforward, such
large deviations from theory are unacceptable.

The rate of discharge from a 3-D axi-symmetric hopper was
measured experimentally by several researchers (see Elbicki and
Tardos, 1998, and Tardos andMort, 2005 for an extensive review) and
the accepted equation to predict this flow rate, was established by
Beverloo, (in Shamlou (1990)) and reads:

W = C�bulk

√
gD5

h , with Dh = Do − 1.4dp (1)
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Here W, is the mass flow-rate, �bulk, is the material's bulk density,
g is the acceleration of gravity and Dh, is a nominal diameter of the
outlet calculated from the geometric diameter D0 and the particle
size, dp, as shown in Eq. (1). The equation contains a coefficient, C,
taken by Beverloo as, C = 0.58. The value of the discharge rate ap-
pears to be insensitive to the hopper half angle, material's coefficient
of internal and wall friction and in general to any physical property
of the powder (aside from its density) as long as cohesion and inter-
stitial gas do not come into play.

Several researchers have attempted to solve analytically and nu-
merically the outflow from the hopper (see extensive review in
Tardos (1997)). One of the simpler solutions, the so called hour-glass
theory (see Nedderman, 1992) reads:

W = �
4

√
1

(5 sin � − 1) sin �
�bulk

√
gD5

h (2)

where in addition to the notations in Eq. (1),�, is the angle of internal
friction and �, is the hopper half angle as shown in Fig. 1. Thus, the co-
efficient is computed theoretically as C=(�/4)[(5 sin �−1) sin �]−1/2;
unfortunately, for a typical value of the internal powder friction
angle, such as 30◦, this expression gives elevated values; C > 1 for
hopper angles below 25◦. One should note that the theoretical ap-
proach leading to Eq. (2) assumes the powder to be incompressible,
i.e., �bulk is assumed to be constant. Tardos (1997) also obtained
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Fig. 1. Schematic representation of the axi-symmetric hopper/silo geometry.

a similar solution from the continuum-based equations proposed
by Schaeffer (1987) for an incompressible powder obeying the von
Mises yield criteria.

A recent numerical solution by Shrivastava and Sundaresan
(2003) who took into account the existence of velocity fluctuations
in the powder, by introducing the effect of the granular tempera-
ture and some form of powder compressibility, calculated for the
coefficient C the value C = 1.6. While there are still a large number
of assumptions in both models cited above, including somewhat
unrealistic boundary conditions, the discrepancy between theory
and measurements is too large to be simply overlooked.

There is little experimental data available for fully 3-D (conical)
hoppers. Tuzun et al. have reported low-resolution density profiles
in mass flow hoppers with 10◦ and 30◦ half angles (Hosseini-Ashrafi
and Tuzun, 1993; Langston et al., 1997, respectively). Observed di-
lation was under predicted by discrete element simulation in the
latter work.

We attempt in this note to (i) measure powder flow rates from
conical hoppers fed from a cylindrical bin with small, 200�m-
diameter, fairly round particles, (ii) measure axial velocity and
density fields in the conical sections using NMR and (iii) compare
the flow rate and the velocity and density profiles to a theoretical
model obtained from the equations developed by Schaeffer (1987)
but taking into account powder compressibility.

2. Theoretical analysis

We follow closely the method of solution described in detail in
Tardos (1997) for the compressible powder and the geometry of the 2-
D hopper and apply it to the 3-D axi-symmetric case. We reproduce
here the set of equations that need to be solved for this geometry.
We start with the continuity equation that reads:

��
�t

+ ∇ · (�ū) = 0 (3)

where �, denotes the variable bulk density of the material. This
equation is satisfied approximately by an appropriate choice of the
velocity and density variation in the hopper, in the form:

ū = vr(r) = A
r2+n

; and � = �bulk

(
r
R

)n

(4)
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Fig. 2. Experimental result and calculated mass flow-rates (coefficients C) as a
function of the hopper half angle, �, from several theoretical models. The prediction
of the Beverloo equation is also shown. The compressible curves (n = 0.1–0.5) are
computed with � = 30◦ and � = 0 · 19 · The hour-glass solution has � = 30◦ .

Here, r is the radial coordinate measured from the virtual apex of
the hopper-cone and R is the length of the cone to the point where
the cylindrical silo is connected to the conical hopper so that the
maximum value of rmax = R, as shown in Fig. 5. For moderate to large
friction angles, the choice of density distribution as shown in Eq. (4),
is equivalent to a powder compressibility law of the form (Tardos,
1997):

p(�)−1/n = const. (5)

holding over much of the contraction where p depends linearly on
radius. It is worthwhile noting that n = 1 for an ideal (granular) gas
but n should be small for a solid state for which large pressures are
necessary for small changes in the powder volume.

The constant A in Eq. (4) has to be determined from the momen-
tum conservation equations given below:

�
Dū
Dt

= ∇p − ∇ ·
(√

2q(p,�)
Dij − ∇ · ū�ij/3∣∣Dij − ∇ · ū�ij/3

∣∣
)

+ �ḡ (6)

The notations in this equation are those used in fluid mechanics
to denote D/Dt, as the material derivative, �ij the unit tensor (the
Kronecker delta) and p as the pressure (average normal stress in this
case). The only special feature of this equation is the yield condition
given by the function q(p,�) which in this case is taken as q ≈ p sin�,
the well-known Coulomb friction yield condition. Assuming, in ad-
dition, that the pressure is only a function of the radius, p = p(r), and
that the hopper's half angle is relatively small (steep hopper) so that
the action of gravity is �g = gr , yields an analytical solution for the
velocity in Eq. (4) with the constant A, given as:

A = f (n, sin �)�2+n
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(7)

where the quantity, �, is the normalized centerline apex-to-outlet
distance, expressible as Do/Dsilo, and “f” is a known function of the
index “n” and the internal angle of friction of the powder. The above
solution assumes open hopper boundary conditions (p = 0 at r/R = �
and 1), as depicted in Fig. 1. A silo solution, with upper boundary con-
dition p′(r) = 0, gives a slightly more cumbersome expression that
agrees quantitatively, within a few percent, for modest �( � 0 · 2)
and realistic friction angles—as expected.
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