
Author's Accepted Manuscript

Dynamic softening mechanism in Ti-13V-11Cr-3Al beta Ti alloy during hot compressive deformation

S.M. Abbasi, A. Momeni, Y.C. Lin, H.R. Jafarian

www.elsevier.com/locate/msea

PII: S0921-5093(16)30423-3

http://dx.doi.org/10.1016/j.msea.2016.04.040 DOI:

Reference: MSA33569

To appear in: Materials Science & Engineering A

Received date: 21 March 2016 Revised date: 11 April 2016 Accepted date: 12 April 2016

Cite this article as: S.M. Abbasi, A. Momeni, Y.C. Lin and H.R. Jafarian, Dynamic softening mechanism in Ti-13V-11Cr-3Al beta Ti alloy during hot compressive deformation, Materials Engineering Science & http://dx.doi.org/10.1016/j.msea.2016.04.040

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Dynamic softening mechanism in Ti-13V-11Cr-3Al beta Ti alloy during hot compressive deformation

S.M. Abbasi¹, A. Momeni^{2*}, Y.C. Lin³, H.R. Jafarian⁴

¹Metallic Materials Research Center (MMRC), Maleke Ashtar University of Technology, Tehran, Iran.

²Materials Science and Engineering Department, Hamedan University of Technology, Hamedan, Iran.

³School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

⁴School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran

*Corresponding author: Amir Momeni, email: ammomeni@aut.ac.ir

Abstract

Dynamic recrystallization (DRX) behavior of Ti-13V-11Cr-3Al beta Ti alloy was investigated by performing hot compression tests at temperatures 930 and 1030 °C and strain rate of 0.1 s⁻¹. EBSD measurements and optical microscopy analyses showed that continuous dynamic recrystallization leads to a considerable grain refinement through the dissociation of coarse deformed grains. It was observed that the well-developed subgrains formed by the extended dynamic recovery are responsible for the grain dissociation. The random orientation of new grains supports the fact that subgrains rotation would be the final step which turns the well-developed subgrains into the recrystallized grains. Some remarks such as grain boundary serrations and nucleations at 930 °C were typical of the propensity for discontinuous DRX at low temperatures. However, the same remarks were absent at 1030 °C. The kinetics of dynamic recrystallization was described by the Avrami kinetics equation. The change of Avrami's exponent (n) from 1.17 to 0.48 by increasing temperature from 930 to 1030 °C was associated with variation in the mechanism of dynamic recrystallization from continuous-partial discontinuous DRX at 930 °C to the fully continuous DRX at 1030 °C.

KeyWords: Dynamic recrystallization; Titanium alloy; Hot Compression; EBSD; Flow curve.

1-Introduction

Beta Ti alloys are desirable for different applications especially in the automotive and aerospace industries [1]. They are characterized by excellent mechanical properties and good

Download English Version:

https://daneshyari.com/en/article/1573236

Download Persian Version:

https://daneshyari.com/article/1573236

<u>Daneshyari.com</u>