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a b s t r a c t

An ensemble of n spherical grains is considered, each of which is characterized by its radius ri and by a
hardening variable ai. The hardening variable obeys a Chaboche-type evolution equation with dynamic
and static recovery. The grain growth law includes the usual contribution of the grain boundary energy, a
term for the stored energy associated with the hardening variable, and the Zener pinning force exerted
by particles on the migrating grain boundaries. New grains develop by recrystallization in grains whose
stored energy density exceeds a critical value. The growth or shrinkage of the particles, which restrain
grain boundary migration, obeys a thermodynamic/kinetic evolution equation. This set of first order
differential equations for ri, ai and the particle radius is integrated numerically. Fictitious model para-
meters for a virtual nickel base alloy are used to demonstrate the properties and capabilities of the
model. For a real nickel alloy, model parameters are adjusted using measured stress-strain curves, as well
as recrystallized volume fractions and grain size distributions. Finally the model with adjusted para-
meters is applied to a forming process with complex temperature-strain rate histories.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

If a metal is deformed at high temperature, the energy stored in
the form of dislocation structures can be released by recovery
processes, i.e. rearrangement and annihilation of dislocations, and/
or by recrystallization, i.e. the nucleation and growth of more or
less defect-free new grains. A quantitative understanding of the
mechanisms is helpful to achieve a desired microstructure (usually
a small grain size with a mono-modal size distribution) in tech-
nological forming processes.

Doherty et al. [1] summarize the knowledge of the 1990s on the
material science of recrystallization in an exhaustive review.
Classical papers describe the kinetics of recrystallization by
equations relating recrystallized volume fraction to time or strain
(Kolmogorov [2], Johnson and Mehl [3], Avrami [4], Sellars [5],
Humphreys [6]). Sommitsch et al. [7] apply this approach to study
recrystallization and grain growth in a new nickel base alloy Allvac
718Plus under typical hot forming conditions. Also Lü et al. [8]
evaluate their experimental results on the annealing of a cold-
rolled Fe–Mn–C alloy in terms of the Kolmogorov–Johnson–Mehl–
Avrami model. Lin et al. [9] present a finite element study of the

stress/strain distribution and the microstructural evolution in
42CrMo steel during a hot upsetting process using the Avrami
equation.

In a review article, Hallberg [10] summarizes the progress in
modelling techniques beyond the classical approaches. Recently
the cellular automata method has become popular [11,12]. In
conjunction with a crystal plasticity model it provides not only
detailed information on grain sizes, but also on crystallographic
texture [12]. Schäfer et al. [13] use cellular automata for the si-
mulation of recrystallization and recovery in an Al–Fe–Si alloy
during annealing after cold rolling and compare the results with
experiments.

The present paper pursues a similar approach as Montheillet
et al. [14] and Bernard et al. [15]. There are, however, significant
differences, some of which are explained in connection with the
description of the model below. In [14,15], as well as in the present
paper, a set of n spherical grains is considered, each of which is
characterized by two state variables, viz. the grain radius ri and the
hardening variable ai. In the spirit of mean field theory each grain
grows in competition with an average of all other grains, rather
than with its actual neighborhood. The formation of new grains by
recrystallization is described by a phenomenological rate equation.

Precipitates play an important role, since they can pin grain
boundaries thus retarding grain growth. Hence the precipitation
and dissolution of particles is also included in the present model.

Compared to the classical models, which are based on explicit
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dependencies of the recrystallized volume fraction on time (or
strain), the present model, which is based on evolution equations
for the state variables, is more flexible in describing complex
loading and temperature histories; and it provides grain size dis-
tribution functions. Other than the present model, cellular auto-
mata take the individual neighborhood of grains into account, but
they are computationally much more demanding.

2. The model equations

2.1. Evolution of the hardening variable

The hardening variable ai is taken from the Chaboche model,
which is used here in a slightly modified form involving the hy-
perbolic sine function

ε ε σ σ̇ = ̇ [(( − − ) ) ] ( )a Ksinh / . 1i i M i
m

1 ,

The plastic strain rate, ε ,̇ is assumed to be the same in all grains
(Taylor assumption), σi is the stress in grain i, ε1̇, K and m are
model parameters; σM i, is the temperature-dependent yield stress
at zero strain; it includes precipitation hardening by the Orowan
mechanism (the second term in Eq. 2 below) and the Hall–Petch
effect (the third term):
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The Orowan stress contains the shear modulus G, the Burgers
vector b, the number density of precipitates P and the precipitate
radius ρ, which evolves according to Eq. (8). The dimensionless
factor αOr is expected to lie in the range 1–3; however, it is set
equal to zero in the examples shown below; ky is the constant of
the Hall–Petch relation; σy, τ1 und τ2 are parameters. The hyper-
bolic-tangent describing the temperature dependence is purely
empirical.

The hardening variable obeys the evolution equation

ε ε β̇ = ̇ − ̇ − ( + ) + ( )∂ ∂ ̇ ( )a h R a R a a a h h TT/ 1 / / . 3i dyn i stat i i i
3 2

Here h is the initial hardening rate, Rdyn and Rstat are model
parameters for dynamic and static recovery, respectively, and the
last term guarantees thermodynamic consistency under variable
temperature conditions. The usual form of the static recovery term
is recovered for large β . Montheillet et al. [14] and Bernard et al.
[15] use “dislocation density” instead of the hardening variable and
omit the last two terms in Eq. (3).

2.2. Macroscopic stress

The macroscopic stress is calculated as the volume average of
the stresses in the grains, σ σ= ∑ ∑r r/i i i

3 3, where σi is obtained from
Eq. (1).

2.3. Stored energy

In the grain growth and recrystallization model described be-
low, the hardening variable serves to calculate the stored energy
density in a grain, ( )a h/ 2i

2 according to [16]. The stored energy
drives recrystallization and favors the growth of grains with low
stored energy.

2.4. Evolution of the grain size

The grain radius obeys the evolution equation

̇ = ( )r MF 4i i

with the temperature dependent grain boundary mobility M and
the driving force Fi. The driving force contains contributions from
the specific grain boundary energy, γ , from the stored energy
density, ( )a h/ 2i

2 , and from the Zener pinning force exerted by
precipitate particles, Fpin (Eq. 7 below)
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The sign in Eq. (5a) is chosen such that the pinning force reduces
the amount of the driving force. The Lagrange multiplier λ ensures
the conservation of volume expressed by ∑ ̇== r r 0i

n
i i1
2 . This leads to a

nonlinear equation for λ, which can be solved numerically by the
regula falsi method. For =F 0pin the equation for λ becomes linear

and can readily be solved analytically. The term θ( + )r1/ 1 i
2 in Eqs.

(5a) and (5b) is introduced to capture the fact that grain coar-
sening seems to be retarded considerably at large grain sizes in the
nickel base alloys considered below. For θ = 0 and ai¼0, the usual
form of the grain growth law as proposed by Hillert [17] is
recovered.

Montheillet et al. [14] neglect the term γ− r/ i in Eqs. (5a) and
(5b), so that ordinary grain coarsening cannot be modelled. Ber-
nard et al. [15] mention the pinning force, but do not provide
equations for its evolution. An advantage of the model in [15] is
that it is a two-site model, allowing a distinction between the
effective neighborhoods of recrystallized and non-recrystallized
grains.

2.5. Recrystallization

The recrystallization process is described phenomenologically
by an equation for the rate at which recrystallized volume devel-
ops in grain i

̇ = ( − ) ( ) ≥ ( )V Br a a h a a/ 2 if . 6RX i i i crit i crit,
2 2 2

According to Eq. (6) only grains with a sufficiently high stored
energy, i.e. with ≥a ai crit , can recrystallize; for <a ai crit is ̇ =VRX i, 0; B

is a temperature dependent kinetic parameter. The factor ri
2 is

motivated by the idea that the number of nucleation sites scales
with the grain surface, since recrystallization occurs mainly at
grain boundaries. For nucleation in the bulk, ri

3 should be used.
Montheillet et al. [14] and Bernard et al. [15] use different

phenomenological expressions for the recrystallization rate. In [14]
the recrystallized volume in a time step depends on the disloca-
tion density averaged over all grains. However, it appears to be
more plausible to assume that grains with a high stored energy
can recrystallize independently of the state of the other grains, as
it is assumed in the present paper.

2.6. Pinning force

Assuming a statistical distribution of spherical particles with
radius ρ and number density P the pinning force is (see e.g. [11])

αρ γπ= ( )F P2 , 7pin
2

where α is used as an adjustable parameter to account for the fact
that particles are often located preferentially on grain boundaries
rather than being homogeneously distributed in the grains.
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