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The normalized Reynolds (NR-) stress is a symmetric, non-negative, dyadic-valued operator. An analysis
of the hydrodynamic equation governing velocity fluctuations of a constant property Newtonian fluid
shows that this operator is related to a prestress operator that is also symmetric and non-negative. The
prestress operator accounts for local spatial changes in the fluctuating pressure and in the fluctuating
instantaneous Reynolds stress. The Cayley–Hamilton theorem from linear algebra is used to complete the
closure with a non-negative mapping of the normalized Reynolds stress into the prestress.

The non-negative mapping between the prestress operator and the Reynolds stress depends on a
scalar-valued turbulent transport time related to the relaxation of a Green's function associated with a
convective–viscous parabolic differential operator and the relaxation of a two-point, space–time corre-
lation related to turbulent velocity fluctuations. The preclosure equation also depends on a kinematic
operator related to the average velocity gradient and a rotational operator related to the angular velocity
of the frame.

The resulting universal realizable anisotropic prestress (URAPS-) closure is realizable for all non-
rotating and rotating turbulent flows, provided the complementary transport equations for the turbulent
kinetic energy and the turbulent dissipation are formulated to yield non-negative solutions. Experimental
data and DNS results previously reported in the literature for non-rotating homogeneous simple shear
and for non-rotating and rotating homogeneous decay are used to determine the closure constants. For
rotating homogeneous simple shear, the URAPS-closure predicts the existence of self-similar states for
finite positive and negative rotation numbers. The URAPS-closure for the NR-stress predicts anisotropic
states consistent with expected behavior.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Navier–Stokes equation in a rotating frame of reference

Turbulent flows of constant property Newtonian fluids in a
rotating frame of reference are governed by the instantaneous
Navier–Stokes (NS-) equation and the continuity equation (see
Piquet, 1999, p. 18):

�u
�t

+ u · F = −∇
⎛
⎝ p

�
− x · (� · �T ) · x

2

⎞
⎠+ �∇2u + g, (1.1)

∇ · u = 0. (1.2)

In Eq. (1.1), F is a kinematic operator defined as F ≡ ∇u + 2�, and
g is the acceleration due to gravity. The anti-symmetric rotational
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operator � is related to the angular velocity � of a rotating frame of
reference (i.e., � = � · �). The symmetric and anti-symmetric com-

ponents of the velocity gradient are defined as follows:

∇u ≡ ∇u + (∇u)T

2
+ ∇u − (∇u)T

2
= S + W . (1.3)

Eq. (1.2) implies that the pressure distribution for constant density
fluids satisfies a Poisson equation:

−∇2

⎛
⎝ p

�
− x · (� · �T ) · x

2

⎞
⎠= ∇ · (u · F), (1.4)

the independent variables (x, t) and the dependent variables (u,p)
in Eqs. (1.1)–(1.4) are associated with a rotating frame of reference
(��0). The same notation is used for the independent and depen-
dent variables in a non-rotating frame (� = 0).

For large Reynolds numbers, Eqs. (1.1) and (1.2) subject to ap-
propriate boundary conditions and initial conditions govern the
behavior of turbulent flows of constant property Newtonian fluids.
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The instantaneous velocity and pressure fields are three-dimensional,
spatially inhomogeneous, and temporally unsteady: u = u(x, t) and
p = p(x, t). Small differences between two instantaneous velocity
fields at t = 0 presumably cause large differences in the solutions
to Eqs. (1.1) and (1.2) for t> 0. Instantaneous turbulent flows are
neither temporally steady nor spatially uniform; however; average
properties of the instantaneous fields are reproducible and may be
statistically stationary and/or statistically homogeneous (Monin and
Yaglom, 1971; Hinze, 1975; Pope, 2000).

1.2. Reynolds averaged Navier–Stokes equation in a rotating frame of
reference

The reproducibility of low-order statistical properties of turbulent
flows has partially motivated the use of statistical methods to study
the behavior of constant property Newtonian fluids at large Reynolds
numbers (see, esp., Piquet, 1999; Pope, 2000). If � ∈ � is used to
designate a specific high Reynolds number solution to Eqs. (1.1) and
(1.2), then an ensemble (or Reynolds) average of the velocity field
and pressure field are formally represented by 〈u〉(x, t) = 〈u(x, t; �)〉
and 〈p〉(x, t) = 〈p(x, t; �)〉, resp. For a fixed value of x and t, ensem-
ble averages of Eqs. (1.1), (1.2), and (1.4) yield the following set of
unclosed equations in a rotating frame of reference:

�〈u〉
�t

+ 〈u〉 · 〈F〉 = −∇
⎛
⎝ 〈p〉

�
− x · (� · �T ) · x

2

⎞
⎠

+ g + �∇2〈u〉 − ∇ · 〈u′u′〉, (1.5)

∇ · 〈u〉 = 0, (1.6)

−∇2

⎛
⎝ 〈p〉

�
− x · (� · �T ) · x

2

⎞
⎠= +∇ · [〈u〉 · 〈F〉 + ∇ · 〈u′u′〉]. (1.7)

In Eqs. (1.5) and (1.7), 〈F〉 ≡ ∇〈u〉 + 2�. Eq. (1.5), which is known
as the Reynolds averaged Navier–Stokes (RANS-) equation, is exact,
but unclosed. The RANS-equation governs the behavior of the first
moment of the velocity distribution functional associated with an
ensemble of velocity fields. The Reynolds average operation 〈·〉 is
linear and commutes with spatial and temporal derivatives within
the frame of reference in which it is applied. The fluctuating veloc-
ity field is defined as u′(x, t; �) ≡ u(x, t; �) − 〈u〉(x, t); and, the fluctu-
ating pressure field is defined as p′(x, t; �) ≡ p(x, t; �) − 〈p〉(x, t). The
Reynolds average of a mean field reproduces the mean field; there-
fore, 〈u′(x, t; �)〉 = 0 and 〈p′(x, t; �)〉 = 0.

1.3. The normalized Reynolds stress

The single-point statistical correlation +〈�uu′〉(≡ +�〈u′u′〉) in the
RANS-equation accounts for the mean flux of instantaneous momen-
tum by velocity fluctuations relative to the mean velocity. This sta-
tistical correlation directly affects the mean velocity field as well as
the mean pressure field. The normalized Reynolds momentum flux
(or, equivalently, the normalized Reynolds (NR-) stress) is defined as

R ≡ 〈u′u′〉
tr(〈u′u′〉) , RT = R and tr(R) = 1. (1.8)

The anisotropic component of the NR-stress R is

b ≡ R − 1
3 I, bT = b and tr(b) = 0. (1.9)

By definition, the NR-stress is a non-negative operator inasmuch as

Q(z) ≡ R : zz = 〈(z · u′)(u′ · z)〉
tr〈u′u′〉 �0

for all constant vectors z ∈ E3 	 ‖z‖ = 1. (1.10)

The above inequality is necessary and sufficient for the eigenval-
ues of R to be non-negative and for the components of R to satisfy
Schwartz's inequalities (Schumann, 1977). A turbulent closure model
for R that satisfies Ineq. (1.10) for all turbulent flows in rotating and
in non-rotating frames is realizable. As noted by Rung et al. (1999),
Gatski and Jongen (2000), and Gatski (2004), many widely employed
closure models, such as the “standard” k–� model, do not satisfy Ineq.
(1.10) for all turbulent flows and are, thereby, unsuitable closures
for the RANS-equation.

In Eq. (1.10) implies that the two non-zero invariants of the nor-
malized anisotropic stress b (i.e., IIb ≡ tr(b · b) and IIIb ≡ tr(b · b · b))
must fall on the bounded region defined by ABC in Fig. 1. This con-
struction, which is referred to in the turbulence literature as the
Lumley (L-) diagram (see Lumley, 1978; Pope, 2000, p. 394), holds for
all anisotropic operators that are symmetric, normalized, and non-
negative. A realizable turbulent closure model for R has anisotropic
invariants within or on the boundaries of the ABC-domain for all
flows. Unfortunately, a turbulent model that is calibrated to be real-
izable for a specific flow may not be realizable for another flow. To
avoid this dilemma, the condition that R must be a non-negative op-
erator should be explicitly incorporated into any precalibrated rep-
resentation of R.

The shape of the quadratic form Q(z) defined by Eq. (1.10) de-
pends on the eigenvalues of R and, thereby, the invariants of b
(i.e., IIb and IIIb). Each realizable anisotropic state in Fig. 1 is associ-
ated with a quadratic form Q(IIb, IIIb). For example, oblate anisotropic
states are on the AB-boundary, planar anisotropic states are on the
BC-boundary, and prolate anisotropic states are on the AC-boundary.
The realizable states defined by IIIb = 0 and 0< IIb <2/9 have the
interesting feature that the eigenvalues of R satisfy the following
inequality: 0��R1 ��R2 = 1/3��R3 �2/3. These states divide the
L-diagram into two parts: the oblate-like states for which IIIb <0;
and, the prolate-like states for which IIIb >0. Fig. 1 provides a use-
ful means to compare experimental results, DNS results, and model
predictions of anisotropic states associated with a non-negative, nor-
malized, symmetric operator. The anisotropic states predicted by
several commonly used algebraic Reynolds stress closure models for
simple shear flows are noted below in order to underscore the need
for the approach developed hereinafter.

1.4. “Eddy” viscosity closure

The “eddy” viscosity closure for R was introduced by Boussinesq
(1877) and continues to be widely used to study Eqs. (1.1) and (1.2).
The underlying premise of the Boussinesq (B-) closure is that the
mean field momentum flux caused by continuum scale turbulent
fluctuations is analogous to the momentum flux caused bymolecular
scale fluctuations. Consequently, the B-closure assumes that (see
Pope, 2000, p. 358)

RB = 1
3 I + bB, bB = −	e〈S〉, 	e ≡ �e

k
= Ce

k
�
, (1.11)

where k ≡ tr〈u′u′〉/2 and � ≡ �〈(∇u′) : (∇u′)T 〉. According to Ineq.
(1.10), the B-closure is realizable for all turbulent flows provided
3	e〈S〉 : zz�1 for all constant vectors z ∈ E3 	 ‖z‖ = 1. Clearly, this
condition implies that the “eddy” coefficient Ce(IIS, IIIS) depends on
the invariants of the dimensionless mean strain rate operator, k〈S〉/�.
The relationship between the mean strain rate and the normalized
Reynolds stress expressed by Eq. (1.11) is presently used as a sub-
grid model for large eddy simulations (see Pope, 2000, p. 587) and
as a closure model for the Reynolds stress in the RANS-equation. If
Ce is assumed to be a universal constant (i.e., standard k–� model),
then the B-closure is clearly not realizable for all turbulent flows.

The B-closure implies that the “production” of turbulent ki-
netic energy, defined by P(≡ −〈u′u′〉 : 〈S〉), is non-negative for all



Download English Version:

https://daneshyari.com/en/article/157337

Download Persian Version:

https://daneshyari.com/article/157337

Daneshyari.com

https://daneshyari.com/en/article/157337
https://daneshyari.com/article/157337
https://daneshyari.com

