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Nuclear magnetic resonance (NMR) spectroscopy has been used effectively in the analysis of elastomeric,
soft materials and has been proven to be both sensitive to micro- and macroscopic changes associated
with “aging” mechanisms. Traditional analyses, however, rely on empirical formulae containing a large
number of (often arbitrary) independent variables. The resulting ambiguity can be circumvented largely
by developing models of NMR observables that are based on basic polymer physics. We compare two
such models, one previously published and one derived herein, along with two empirical expressions
that describe the proton transverse magnetization decay associated with complex polymer networks.
One particular extracted parameter, the proton–proton residual dipolar coupling (RDC), can be directly
related to network topology, and a comparison of the extracted RDCs reveals high consistency among the
models. An expression derived from the properties of a static Gaussian chain can minimize the number of
parameters necessarily to describe the solid-like, networked proton population to a single independent
parameter, the average RDC, Davg . The distribution of RDCs derived via this methodology is qualitatively
similar to those derived from previously published multiple quantum techniques, although quantitative
differences between the derived RDCs persist, suggesting that further analysis is necessary.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Polysiloxane-based composites have been particularly attractive
as structural materials due to a relatively large, tunable range in
shear modulus upon milling with fumed silica, even at relatively low
filler mass fractions. In practical application, however, these mate-
rials are often exposed to harsh chemical, physical, mechanical, and
radiological environments that ultimately limit useful device life-
times through irreversible changes in constituent components. The
assessment of damage, particularly for elastomeric materials, is of-
ten done bemonitoring changes in macroscopic structural properties
(e.g., shear and storage moduli). These methods are often inherently
destructive and typically afford an average measurement over the
entire sample. In situations where these materials are scarce, sen-
sitive, or otherwise difficult to attain in any quantity, there exists a
need for analytical techniques to be sensitive to subtle changes in
a non-destructive, non-invasive capacity. Perhaps most essential for
engineering applications is the development of intuitive analytical
methodologies from which one can extract physically meaningful
parameters from experimental data yet are simple to implement in
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practice while containing significant scientific rigor in their founda-
tion.

Nuclearmagnetic resonance (NMR) spectroscopyhasbeenutilized
effectively over the last few decades for both fundamental and ap-
plied studies of polymer-containing materials. Elastomeric materials
form one case study for the efficacy of NMR in addressing funda-
mentals issues of polymer physics. Elastomeric composite materials
exhibit both physical and chemical junctions (from e.g., surface-
polymer interactions and chain crosslinking, respectively) that form
a long-range network topology. This physical structure imposes
restrictions on individual polymer segment motions, enhancing the
inherently anisotropic dynamical nature of these materials. NMR
exploits the anisotropic nature of various intra- and internuclear
interactions to quantify local chain fluctuations over a wide range of
motional time scales, from discrete monomer motions to reptation
and bulk diffusion. One observable that is particularly relevant is the
transverse decay of the proton NMR signal. This decay, usually mea-
sured by stroboscopic sampling of the proton NMR signal during a
repeating cycle of pulses, is governed by the residual proton–proton
homonuclear dipolar coupling (hereafter referred to as the RDC)
between protons on polymer chains. This magnetic dipole–dipole
interaction between protons is partially averaged by molecular mo-
tion; in network elastomers, the entanglements between chains and
chain interactionwith filler surfaces act as tethers so that the residual
couplings form an indirect measurement of entanglement density.
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We have used previously proton transverse magnetization (T2)
decay to develop a correlation of a particular NMR derived quantity,
the proton homonuclear dipolar second moment, to the shear mod-
ulus in PDMS-silica composites and have demonstrated its use in the
spatial resolution of macroscopic heterogeneities via NMR imaging
techniques (Mayer et al., 2007). In analyzing our previous NMR data,
several proton populations were spectroscopically identified, but it
remains unclear if these populations correspond to any physically
meaningful proton domains. Ultimately, the functional form chosen
to describe proton T2 decay, from which dipolar second moments
were derived, became an ansatz chosen for simplicity and apparent
fidelity to the data. Considering the heterogeneity of proton dynam-
ics in networked polymers, one surmises that there exists a contin-
uum of dipolar second moments, in contrast to the assertion of a
distinct second moment for bulk network protons, a different second
moment for protons on tightly silica-adsorbed chains, and others,
perhaps, for weakly bound species. While a continuum model may
be more physically appealing, the latter scenarios provide excellent
fits to experimental data.

Previous workers have developed expressions for the transverse
decay of protons on polymer chains, in polymer networks, etc., based
on well-established ideas common in polymer physics. Most no-
tably is a function that was applied to poly(styrene-co-butadiene)
elastomers well above the glass transition temperature, Tg (Sotta
et al., 1996). These workers recast the spatially dependent terms of
the homonuclear dipolar Hamiltonian in terms of the Gaussian dis-
tribution of the polymer end-to-end vector. The transverse decay
associated with solid-like domains represents inhomogeneous line
broadening of the proton lineshape, and though these interactions
are weak, the investigators are able to correlate them to structural
moduli of these elastomers.

In this article we seek to assess several expressions for the trans-
verse decay of proton magnetization for a complex PDMS-based
elastomer subjected to a range of �-irradiation exposures. These ma-
terials have been examined in several other studies but in a more
phenomenological fashion (e.g., Maxwell and Balazs, 2002; Maxwell
et al., 2005; Mayer et al., 2007). Here we apply the function men-
tioned above (Sotta et al., 1996), a similar function derived herein,
and an expression derived assuming an ansatz distribution of dipo-
lar couplings. The extracted parameters will be compared to each
other and to trends published previously in the literature. The utility
and efficacy of these expressions in describing T2 decay in complex
elastomeric materials is considered.

2. Theory

We first present an abbreviated summary of the derivation of
Eq. (8) from Sotta et al. (1996), which we will refer to asMS(t), which
represents the total 1H transverse magnetization of the spin system.
Note that the subscript S refers to the initial of that main author's
last name. The authors take the inhomogeneous component of the
time evolution of the free induction decay (FID) and recast it in terms
of the Gaussian distributed squared end-to-end vector of a static
polymer chain. Convolution of the FID (neglecting homogeneous T2
terms) with the Gaussian distribution yields a normalized, closed-
form expression for transverse magnetization evolution
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where M0 is the initial transverse magnetization, N is related to
the number of repeat units between crosslinks (i.e., a measure of
interjunction segment length), k is a geometrical factor (equal to,
e.g., 3
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the homonuclear dipolar coupling strength given by
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where � is the proton gyromagnetic ratio, and r is the internuclear
distance. Note that since D represents the static dipolar coupling
strength (a constant for a given distance, r) from known monomer
geometry, the sole parameter determining MS(t) is N, the effective
mesh length of the network. This parameter can also be thought of as
a scaling factor by which the dipolar coupling is reduced as a result
of motional averaging over that length scale. This reduced coupling is
referred to as the RDC constant and represents the coupling strength
after averaging by fast, local segmental chain motions (i.e., those
motions experienced by polymer chains despite the presence of the
network topological constraints).

A similar expression can be derived that employs the so-called
second moment approximation (Kimmich, 1997), where D2N2t2 �
1, equivalent to the idea that strong dipolar couplings dominate the
decay at short times. In this case we can write the basic transverse
decay of proton magnetization as
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Following the derivation of Eq. (1), convolution of Eq. (3) with
the predicted RDC distribution, Eq. (A.3), yields (see Appendix A)
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where U(a, c; x) is the confluent hypergeometric function of the sec-
ond kind, and the subscript M refers to the present author's name.
Note that as a direct result of recasting the squared end-to-end vector
distribution in terms of the quantity D/N, the distribution of residual
couplings, PM , can be now represented by a gamma distribution of
Dres, or
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for Dres�0 (Saalwächter, 2007). We will return to this important
result below. Additionally, we will now refer to the quantity (k/N)D
as Davg for notational simplicity.

Lastly we derive an alternative expression that assumes that the
NMR observables of the network are governed by a Gaussian dis-
tribution of RDCs. This function is derived in the same manner as
Eq. (4), but results instead from the normalized distribution
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for Dres�0. Following Appendix A the expression for the decay trans-
verse magnetization (with subscript G for “Gaussian”) is
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