Author's Accepted Manuscript

An analytical model to predict the equivalent creep strain rate of a lattice truss panel structure

Wenchun Jiang, Shaohua Li, Yun Luo, Shugen Xu, Jianming Gong, Shan-Tung Tu

www.elsevier.com/locate/msea

PII: S0921-5093(16)30230-1

DOI: http://dx.doi.org/10.1016/j.msea.2016.03.028

Reference: MSA33423

To appear in: Materials Science & Engineering A

Received date: 14 January 2016 Revised date: 3 March 2016 Accepted date: 4 March 2016

Cite this article as: Wenchun Jiang, Shaohua Li, Yun Luo, Shugen Xu, Jianming Gong and Shan-Tung Tu, An analytical model to predict the equivalent creep strain rate of a lattice truss panel structure, *Materials Science & Engineering A* http://dx.doi.org/10.1016/j.msea.2016.03.028

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

An analytical model to predict the equivalent creep strain rate of a lattice truss panel structure

Wenchun Jiang^{a*}, Shaohua Li^a, Yun Luo^a, Shugen Xu^a, Jianming Gong^b, Shan-Tung Tu^c

^aState Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, PR

China

^bSchool of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210009, PR China

^cKey Laboratory of Pressure System and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, PR China

Abstract

We developed an analytical model to predict the equivalent creep strain rate of a lattice truss panel structure. The model, which takes into account the effects of the bonded node and the intersection node of the trusses, is well validated by finite element analysis. Compared with Hodge and Dunand model, this model obtains a more accurate prediction result. The creep deformation of the panel structure is controlled by the creep of vertical trusses parallel to the applied load. The equivalent creep strain rate is determined by five key parameters including punching angle, cutting angle, truss thickness, width and length. A slight change of truss dimension can lead to a big variation of the creep rate by orders of magnitude. With the increase of punching angle and cutting angle, the relative density decreases and the stresses in the trusses increase, leading to an increase of creep rate. With the increase of truss thickness and width, the creep rate decreases because the relative density increases and the stresses in the truss decrease. As the truss length increases, the creep rate increases due to the decrease of relative density and the increase of stresses in the truss.

^{*} Corresponding author. Tel.: +86 532 86980609, fax: +86 532 86980609. E-mail address: jiangwenchun@126.com (Wenchun Jiang)

Download English Version:

https://daneshyari.com/en/article/1573513

Download Persian Version:

https://daneshyari.com/article/1573513

<u>Daneshyari.com</u>