
Author's Accepted Manuscript

Solvothermal-assisted graphene encapsulation of SiC nanoparticles:A new horizon toward toughening aluminium matrix nanocomposites

A. Fadavi Boostani, R. Taherzadeh Mousavian, S. Tahamtan, S. Yazdani, R. Azari Khosroshahi, D. Wei, J. Xu, X. Zhang, Z.Y. Jiang

www.elsevier.com/locate/msea

PII: S0921-5093(15)30698-5

DOI: http://dx.doi.org/10.1016/j.msea.2015.12.008

Reference: MSA33091

To appear in: *Materials Science & Engineering A*

Received date: 10 November 2015 Revised date: 2 December 2015 Accepted date: 7 December 2015

Cite this article as: A. Fadavi Boostani, R. Taherzadeh Mousavian, S. Tahamtan S. Yazdani, R. Azari Khosroshahi, D. Wei, J. Xu, X. Zhang and Z.Y. Jiang, Solvothermal-assisted graphene encapsulation of SiC nanoparticles: A nev horizon toward toughening aluminium matrix nanocomposites, *Materials Scienc & Engineering A*, http://dx.doi.org/10.1016/j.msea.2015.12.008

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

CCEPTED MANUSCRI

Solvothermal-assisted graphene encapsulation of SiC nanoparticles:

A new horizon toward toughening aluminium matrix nanocomposites

A. Fadavi Boostani ^a, R. Taherzadeh Mousavian ^b, S. Tahamtan ^c, S. Yazdani ^b, R. Azari Khosroshahi ^b, D. Wei ^d, J. Xu ^c, X.

Zhang^c, Z. Y. Jiang^{*a}

^a School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522, Australia ^b Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran

^c State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, Liaoning, 110004, China

d School of Electrical, Mechanical and Mechatronic Systems, University of Technology, Sydney, NSW 2007, Australia

Abstract

Agglomeration of ceramic nanoparticles is a key challenge during manufacturing aluminium matrix

composites in both solid and liquid methods. This study presents an innovative fabrication route to

diminish the agglomeration of SiC nanoparticles using graphene encapsulating method stimulated by

a solvothermal process. The produced SiC nanoparticles were then incorporated into A357 molten

alloy using a liquid processing route. HRTEM investigations have shown the uniform distribution of

SiC nanoparticles wrapped by onion-liked graphene shells within the matrix of composite, conferring

273% and 400% enhancement in yield strength and tensile ductility, respectively, compared to the

unreinforced one. This is attributed to the manipulation of solidification mechanism of SiC

nanoparticles from pushing to engulfment, ensued from imparting higher thermal conductivity to these

particles by onion-liked graphene sheets. Fractographic observations have revealed the transgranular

facture mode activated due to nano-void coalescence fracture mechanism in composites reinforced

with graphene sheets associated with prolonged ductility. A devised analytical strengthening model

has also demonstrated the profound efficacy of thermal activated dislocation mechanism in fortifying

the matrix, brought about by the exceptional negative thermal expansion coefficient of graphene

sheets.

Keywords: Composites; Semi-solid processing; Mechanical characterization; Electron microscopy;

Fracture

Corresponding author: Tel.:+61 02 42214545.

E-mail address: jiang@uow.edu.au (Z. Y. Jiang), afb496@uowmail.edu.au (A. Fadavi Boostani)

1

Download English Version:

https://daneshyari.com/en/article/1573787

Download Persian Version:

https://daneshyari.com/article/1573787

<u>Daneshyari.com</u>