

Contents lists available at ScienceDirect

Materials Science & Engineering A

journal homepage: www.elsevier.com/locate/msea

On the thermal stability of ultrafine-grained Al stabilized by *in-situ* amorphous Al₂O₃ network

Martin Balog ^{a,b,*}, Tao Hu^b, Peter Krizik ^a, Maria Victoria Castro Riglos ^c, Brandon D. Saller ^b, Hanry Yang ^b, Julie M. Schoenung ^b, Enrique J. Lavernia ^b

^a Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava, Slovak Republic

^b Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA

^c Centro Atómico Bariloche, Av. Bustillo 9.500 (8400) Bariloche, Río Negro, Argentina

ARTICLE INFO

Article history: Received 29 July 2015 Received in revised form 7 September 2015 Accepted 8 September 2015 Available online 14 September 2015

Keywords: Aluminum (Al) Alumina (Al₂O₃) Metal matrix composite (MMC) Powder metallurgy (PM) Thermal stability Ultrafine-grained (UFG) materials

ABSTRACT

Bulk Al materials with average grain sizes of 0.47 and 2.4 µm, were fabricated by quasi-isostatic forging consolidation of two types of Al powders with average particle sizes of 1.3 and 8.9 µm, respectively. By utilizing the native amorphous Al₂O₃ (am-Al₂O₃) film on the Al powders surfaces, a continuous, ~7 nm thick, am-Al₂O₃ network was formed *in situ* in the Al specimens. Systematic investigation of the changes to the am-Al₂O₃ network embedded in the Al matrix upon heating and annealing up to 600 °C was performed by transmission electron microscopy (TEM). At the same time, the stability of the Al grain structure was studied by transmission Kikuchi diffraction (TKD), electron back-scatter diffraction (EBSD), and TEM. The am-Al₂O₃ network remained stable after annealing at 400 °C for 24 h. *In-situ* TEM studies revealed that at temperatures \geq 450 °C, phase transformation of the am-Al₂O₃ network to crystalline γ -Al₂O₃ particles occurred. After annealing at 600 °C for 24 h the transformation was completed, whereby only nanometric γ -Al₂O₃ particles with an average size of 28 nm resided on the high angle grain boundaries of Al. Due to the pinning effect of γ -Al₂O₃, the Al grain and subgrain structures remained unchanged during annealing up to 600 °C for 24 h. The effect of the am-Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ transformation on the mechanical properties of ultrafine- and fine-grained Al is discussed from the standpoint of the underlying mechanisms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, Al-based components are fabricated either by casting or deformation and/or machining of wrought feedstock. Compared to traditional techniques, powder metallurgy (PM) offers various advantages, including: (i) microstructural refinement, increased solubility of alloying elements, and a homogenous microstructure, resulting in enhanced mechanical properties; (ii) the flexibility to produce metal matrix composites (MMCs) by incorporating strengthening phases with various matrix chemistries; and (iii) cost effective production of (near) net-shape complex parts. Typically, Al PM parts are fabricated from gas atomized feedstock powder material.

The exceptionally high thermodynamic stability of the Al_2O_3 phase leads to the formation of a continuous protective Al_2O_3 film covering all of the gas atomized Al powder surfaces, even under

* Corresponding author at: Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 83102 Bratislava, Slovak Republic. Fax: +421 2 44253301.

E-mail address: martin.balog@savba.sk (M. Balog).

high vacuum conditions [1]. Moreover, because of the high cooling rates that are typical of atomization, and the resulting fine powder sizes and structure, the native Al₂O₃ films on the surface of asatomized powders (especially those with finer size) are amorphous $(am-Al_2O_3)$ [2–4], with a thickness of ~2–3 nm [2,4–7]. The amorphous state is preferred below the critical film thickness, because the higher bulk Gibbs free energy of am-Al₂O₃ film, compared to crystalline γ -Al₂O₃ film, is overcompensated for by the low value of the combined am-Al₂O₃ surface and am-Al₂O₃/Al interfacial energies [8]. The am-Al₂O₃ remains thermodynamically stable up to the critical thickness of $\sim 5 \text{ nm}$ [4,8] depending on the crystallographic orientation of the Al substrate and temperature [4,9]. Once this critical thickness is exceeded, am-Al₂O₃ will transform to crystalline γ -Al₂O₃ (or transitional γ -Al₂O₃) in the range 450–550 °C [4,10]. The γ -Al₂O₃ crystals grow epitaxially in respect to an Al substrate on am-Al₂O₃/Al interface [11] and later they develop preferentially along the grain boundaries [12]. The growth of γ -Al₂O₃ films is limited by the rate of inward oxygen diffusion through the films. The γ -Al₂O₃ on the surface of loose powder remains thermodynamically stable during thermal exposures to temperatures normally associated with Al PM

processing, i.e., up to the melting point of Al (T_m =660 °C) [4]. Consequently, any am- or γ -Al₂O₃ phases present on Al particle surfaces behave as a dispersed second phase during powder processing and consolidation. This finding is universal and applies for a wide range of PM processing/consolidation techniques including: ball milling [13,14], hot working (e.g., forging, extrusion) [15,16], sintering (e.g., conventional, spark plasma sintering (SPS)) [17,18], hot isostatic pressing (HIP) [15,19] and severe plastic deformation [20]. Typically, the volume fraction of *in-situ* Al_2O_3 phase in PM parts fabricated from gas atomized powders varies between ~0.1 and ~3 vol% [7]. Depending on the processing and parameters used during consolidation, the dispersed Al₂O₃ phase either persists in the form of an amorphous, nanometric, continuous network or discrete platelets [3]. Otherwise, it crystallizes into nanometric γ -Al₂O₃ particles [15]. Similar to the crystallization of the native am-Al₂O₃ films on as-atomized powders under an oxidizing environment, the nanometric am-Al₂O₃ dispersed phase (network or platelets) in Al matrix remains thermodynamically stable upon annealing to ~450 °C, where it transforms into nanometric γ -Al₂O₃ particles [3,19]. However, the transformation mechanism, the nature of Al₂O₃ phases (specifically in terms of size, crystallinity and distribution) and their thermal stability in an absence of direct diffusion of gaseous oxygen, all remain open questions.

The presence of the *in-situ* Al₂O₃ dispersed phase, especially for those PM parts fabricated from coarse powders, is often neglected despite the findings that the *in-situ* Al₂O₃ dispersoids can restrict grain growth up to high homologous temperatures [7,13]. Moreover, the Al₂O₃ phase may contribute to strengthening, stiffening and creep resistance of the Al matrix in a broad temperature range [3,7,21]. Initial mechanical behavior data indicate that am-Al₂O₃ is more efficient in strengthening and stiffening of the Al matrix in comparison to γ -Al₂O₃ [3]. In addition, the materials with am-Al₂O₃ phase, either in the form of network or platelets, show superior creep performance [15,21,22]. However, fundamental information related to the strengthening and grain pinning effects of am-Al₂O₃ and γ -Al₂O₃ phases in Al PM structures has yet to be established. Motivated by these factors, the objective of the present work is threefold and it aims to investigate:

- i. the changes of am-Al₂O₃ phase dispersed in PM Al upon heating;
- ii. the effect of the am-Al₂O₃ $\rightarrow\gamma$ -Al₂O₃ transformation on the mechanical properties of PM Al; and
- iii. the stabilizing effect of am- and $\gamma\text{-}Al_2O_3$ phases on Al grain structure.

For this purpose, bulk Al MMCs reinforced and stabilized with a nanometric am-Al₂O₃ network with the commercial designation HITEMAL[®] (high temperature aluminum), were fabricated *in situ* by quasi-isostatic forging (QIF) compaction of fine gas-atomized commercial purity (CP) Al powders with particle sizes of 1–10 μ m [3]. In these composites, a nearly continuous am-Al₂O₃ network, with a relatively large volume fraction (up to 2.7 vol%), forms during QIF as result of subtly sheared Al powders with only limited fracturing of native am-Al₂O₃ films. The grain structure of QIF HITEMAL is characterized by a mixture of high and low angle grain boundaries (HAGBs, LAGBs), where am-Al₂O₃ resides at HAGBs,

and LAGBs are free of Al₂O₃ [3]. Ultrafine-grained (UFG) HITEMAL virtually free of LAGBs and fine-grained (FG) HITEMAL with developed subgrain structures were fabricated from two types of fine CP Al powders of different particle sizes in order to elucidate the stabilizing effect of Al₂O₃ on LAGBs. At the same time, the effect of different grain size on susceptibility to grain coarsening was studied. Moreover, the effect of the am-Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ transformation on UFG and FG materials with distinctively different deformation behavior was studied.

2. Experimental

Two different types of commercially available nitrogen atomized Al powders (Al \geq 99.8 wt%) with median particle sizes (d_{50}) of 1.4 and 8.9 µm were used for this study. The specific powder surface area of the powders, determined by physical adsorption with multipoint analysis using nitrogen gas according to the Brunauer-Emmett-Teller (BET) principle, was 3.1 and 0.9 m² g⁻¹, respectively. The loose powders were pressed by cold isostatic pressing (CIP) at 20 MPa. Blanks 35 mm in diameter and 50 mm in length were machined from CIPed green compacts. The blanks were subjected to 5 Pa vacuum degassing (VD) performed at 425 °C for 12 h. VDed blanks were evacuated for 12 h in a vacuum chamber prior to vacuum hot pressing (VHP) performed at 425 °C and 370 MPa. VHPed blanks were consolidated by QIF with a limited amount of shear deformation. QIF was carried out at 420 °C and impact energy of 14 kJ using a screw press FICEP PVX160, and a semi closed forging die. The materials forged from Al powders of d_{50} = 1.3 and 8.9 μ m were labeled as A and B, respectively. To eliminate the work hardening effects induced during processing, as-forged materials were annealed at 400 °C for 24 h (hereafter referred to as the "as-processed" material). In order to execute the am-Al₂O₃ $\rightarrow \gamma$ -Al₂O₃ transformation, as-forged materials were annealed in an Ar atmosphere at 500 and 600 °C for 24 h prior to characterization and testing. The designation for all samples and annealing conditions is summarized in Table 1.

The materials' densities were measured by using the Archimedes' principle. Samples were characterized by using a JEOL 2500SE TEM equipped with an *in-situ* hot stage holder and a Phillips XL-30 scanning electron microscope (SEM) equipped with an Oxford NordlysNano electron back-scatter diffraction (EBSD) detector. The heating rate during in-situ TEM was set to be 5 °C min⁻¹ with 30 min dwells at 400, 450, 500, 550 and 600 °C, respectively. In order to maintain uniform thermal exposure conditions, the same heating sequence was applied for all *in-situ* TEM. Energy dispersive X-ray spectrometry (EDS), EBSD and transmission Kikuchi diffraction (TKD) [23,24] were used to assist in the analysis. For FG B materials the average grain size and the misorientation of neighboring grains were determined by SEM equipped with EBSD using $2 \times 2 \times 2 \text{ mm}^3$ samples. In order to improve the index rate, the average grain size and the misorientation of neighboring grains of UFG A materials were determined by SEM equipped with EBSD using thin foils (i.e., by TKD). Thin foils for TEM and TKD were prepared by electric discharge machining (EDM), mechanical grinding and dimpling followed by the final thinning carried out by Ar ion milling at 4 kV and cooled by liquid nitrogen. The specimens for EBSD analyses

Table 1
The designation of as-forged and annealed materials.

Material	d ₅₀ (μm)	BET $(m^2 g^{-1})$	As-forged	Annealed at 400 °C for 24 h (as-processed)	Annealed at 500 °C for 24 h	Annealed at 600 °C for 24 h
A	1.4	3.1	A0	A400	A500	A600
B	8.9	0.9	B0	B400	B500	B600

Download English Version:

https://daneshyari.com/en/article/1573897

Download Persian Version:

https://daneshyari.com/article/1573897

Daneshyari.com