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a b s t r a c t

This paper presents a study of the immiscible displacement of oil by water in cavity-fracture structures

using smoothed particle hydrodynamics (SPH). The surface tension and wetting behavior are

incorporated into the equation of motion, and pseudo periodic boundary conditions are applied. As

for ‘‘middle-fractured’’ structure, it is found that the ultimate oil recovery is almost determined by the

height of fracture regardless of its orientation, and the result compares well with corresponding

experiments. Besides, the water-wet wall is favorable to higher oil recovery. A systematic exploration is

carried out on ‘‘upper-fractured’’ structure for the feasibility of gravity drainage, where a critical width

of fracture is found, beyond which the oil in the cavity can be driven out. The possible development of

SPH in this background for large-scale simulation is prospected finally.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Multiphase immiscible flows are frequently encountered both
in nature and industries, such as oil recovery, groundwater
contamination, and packed bed chemical reactors. With increas-
ing demand for oil products in the background of limited oil
reserves, the role of secondary oil recovery (water flooding) is
getting more and more important. In general, parametric
investigation on the production conditions such as fracture
orientation, wettability, and inflow velocity is helpful to increase
the oil recovery, and for this purpose, expensive and time-
consuming physical experiments can be effectively reduced by
numerical modeling. However, as for naturally fractured karst
reservoir, oil is mostly stored in huge cavities, and flow mainly
takes place in fractures and cavities (Lin, 2002; Chen et al., 2005).
Apart from the large dimensional ratio of cavity to fracture, the
fractures, cavities, and matrixes are intensively heterogeneous
and anisotropic (Castaing et al., 2002; Lunati and Jenny, 2006),
thus posing great difficulty for the prediction of oil recovery with
traditional numerical technology based on the flow theory of
porous media (Sahimi, 1995). Since a better understanding about
the fundamental physics which govern flow and transport
processes is of high practical significance, a direct numerical
simulation of immiscible flow in typical cavity-fracture structures
is carried out in this study accordingly.

Macro-scale particle methods such as smoothed particle

hydrodynamics (SPH) (Gingold and Monaghan, 1977; Lucy,

1977), macro-scale pseudo-particle modeling (Ge and Li, 2001,

2003), and some other variants (Koshizuka et al., 1995; Koshizuka

and Oka, 1996; Ma et al., 2006), are a collection of fully meshfree

Lagrangian techniques of computational fluid dynamics, in which

the numerical solution is achieved through the movement and

interactions of numerous particles. Though originally proposed in

the context of astrophysical applications, SPH is quite suitable for

flows involving geometrically complex boundaries and dynamical

interfaces, where coalescence and breakup of surface can be

readily handled without complicated procedures of mesh gen-

eration and management in mesh-based methods. In addition,

SPH can be readily extended to involve extra physical and

chemical effects. Through decades of rapid development, SPH

has been applied to a wide range of areas, such as free-surface

incompressible flows (Monaghan, 1994), low Reynolds number

incompressible flows (Morris et al., 1997), high energy impacts

and explosions (Liu et al., 2003), and even large strain solid

mechanics (Libersky et al., 1993; Benz and Asphaug, 1995). As to

the application of SPH to fluid flow in porous medium, it is limited

to single phase yet (Zhu et al., 1999; Jiang et al., 2007). For a

comprehensive description of the SPH method, please refer to (Liu

and Liu, 2003; Monaghan, 2005).
Surface tension plays an important role in the simulation of

immiscible fluids, and it has been implemented in SPH in different
ways. Continuum surface force model (Morris, 2000; Liu and Liu,
2005; Hu and Adams, 2006) relies on an explicit estimation of
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interface curvature, and some other methods mimic the micro-
scopic physics giving rise to surface tension (Nugent and Posch,
2000; Tartakovsky and Meakin, 2005a). Particularly, the model
proposed by Zhou et al. (2008) has proven to be simple,
computationally efficient, and reasonably accurate. With this
model, the displacement of oil by injected water is simulated
using SPH for the typical ‘‘middle-fractured’’ and ‘‘upper-
fractured’’ structures. The effects of some important factors on
flow behaviors and ultimate oil recovery are investigated.

2. Smoothed particle hydrodynamics for immiscible fluids

2.1. SPH fundamentals

In SPH, the continuous fluid is represented by a large set of
particles. Each particle i located at ri is associated with physical
parameters such as mass mi, density ri, velocity vi, and pressure
Pi. The value of any generic function f(r) can be approximated by a
number of neighboring particles (which may also be regarded as
interpolation points) using a weighting function W

f ðrÞ ¼
X

j

mj

rj

f ðrjÞWðr�rj;hÞ; ð1Þ

and its gradient rf (r) becomes

rf ðrÞ ¼
X

j

mj

rj

f ðrjÞrWðr�rj;hÞ; ð2Þ

where h is the smoothing length that determines the support of
the weighting function.

The weighting function is assumed to be an even function of
finite range, which is normalized to unity when integrated over
space. As illustrated in Fig. 1, only the solid particles within the
circular influence domain (radius=kh) of the smoothing function
for particle i actually contribute to the summation process. A
variety of forms, including spline functions of different order,
have been used for the weighting functions. Due to its high
precision and stability (Morris et al., 1997), the quintic spline of
the two-dimensional version:
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where s¼ jr�r0j=h, is also adopted in our work.

The evaluation of the density at a particle for a given
distribution of particle masses is readily obtained by applying
Eq. (1) to the density to give

ri ¼
X

j

mjWðrij;hÞ; ð4Þ

where rij denotes the distance between particles i and j. It should
be mentioned that another method based on continuity equation
is also frequently used to calculate density (Monaghan, 1994),
which is particularly advantageous for free surface flow. Since Eq.
(4) conserves the total mass exactly, it is used for the simulations
described herein.

Although most implementations of SPH employ an artificial
viscosity that was first introduced to permit the modeling of
strong shocks (Monaghan, 2005), the physical viscosity of real
fluid has been realized for low Reynolds number incompressible
flow (Takeda et al., 1994; Morris et al., 1997). Employing a
commonly used form of the pressure gradient and the expression
for viscous diffusion derived by Morris et al. (1997) which ensures
the conservation of linear momentum exactly, the resulting SPH
formulation of the Navier–Stokes equation for nearly incompres-
sible flow is

dvi

dt
¼�
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where mi and mj are the dynamic viscosity of the fluid with respect
to particles i and j, respectively.

However, it is found that the straightforward extension of Eq.
(5) to multiphase flows creates an artificial surface tension due to
the jump in density at the interface between the two fluids
(Hoover, 1998; Colagrossi and Landrini, 2003; Tartakovsky and
Meakin, 2005b). To eliminate this negative effect, the particle
number density ni as proposed by Tartakovsky and Meakin
(2005b), is weighted instead to evaluate the local density, that is,

ni ¼
X

j

Wðrij;hÞ: ð6Þ

Actually, the notion of particle number density is the same to the
idea of specific volume suggested by Hu and Adams (2006).

Adding force Fi for surface tension on the fluid–fluid interface
or wetting force on the wall to Eq. (5), the new version of
momentum equation based on the particle number density is
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where different treatments of surface tension are reflected in the
detailed forms taken by Fi.

SPH cannot model a truly incompressible fluid. Instead, an
artificial compressibility technique is used to model the incom-
pressible flow as a slightly compressible flow via an artificial
equation of state as follows:

P¼ c2n¼ Kn; ð8Þ

where c is the numerical sound speed, and K is usually called
stiffness parameter. The numerical sound speed is a key factor
that deserves careful consideration (Morris et al., 1997). Last but
not least, it is well known that the explicit integration is
conditionally stable, and some criteria of selecting time step is
followed according to (Morris et al., 1997).Fig. 1. Sphere of influence for particle i in a two-dimensional (2D) space.
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