Author's Accepted Manuscript

High strength Al with uniformly distributed Al₂O₃ fragments fabricated by accumulative roll bonding and plasma electrolytic oxidation

M. Reihanian, M. Jalili Shahmansouri, M. Khorasanian

www.elsevier.com/locate/msea

PII: S0921-5093(15)30047-2

DOI: http://dx.doi.org/10.1016/j.msea.2015.05.104

Reference: MSA32432

To appear in: Materials Science & Engineering A

Received date: 2 March 2015 Revised date: 24 April 2015 Accepted date: 29 May 2015

Cite this article as: M. Reihanian, M. Jalili Shahmansouri and M. Khorasanian, High strength Al with uniformly distributed Al₂O₃ fragments fabricated by accumulative roll bonding and plasma electrolytic oxidation, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2015.05.104

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

High strength Al with uniformly distributed Al₂O₃ fragments fabricated by

accumulative roll bonding and plasma electrolytic oxidation

M. Reihanian*, M. Jalili Shahmansouri, M. Khorasanian

Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran

University of Ahvaz, Iran

Abstract

Accumulative roll bonding (ARB) and plasma electrolytic oxidation (PEO) were used to

fabricate Al/Al₂O₃ composite. A uniform distribution of Al₂O₃ fragments was achieved

within the Al matrix after six ARB cycles. In contrast to the large fragments, a small

fragment contains no porosity and exhibits good bonding at interfaces. The Al/Al₂O₃

composite exhibited improved tensile strength of about 180 MPa, in comparison to the

annealed Al (47 MPa).

Keywords

Composites; Sheet forming; Electron microscopy; Mechanical characterization

1. Introduction

During the last decades, metal matrix composites (MMCs) have been interested in the

aerospace, automotive and recreation industries because of their unique balance between the

physical and mechanical properties [1]. Compared with the conventional metal alloys, MMCs

exhibit superior properties such as increased specific strength and stiffness, wear resistance,

vibration damping and decreased coefficient of thermal expansion [2]. Casting and powder

* Corresponding author. Tel.: +98 61 33330010 19x5684; fax: +98 61 33336642.

E-mail address: reihanian@scu.ac.ir (M. Reihanian)

1

Download English Version:

https://daneshyari.com/en/article/1574019

Download Persian Version:

https://daneshyari.com/article/1574019

<u>Daneshyari.com</u>