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a b s t r a c t

The spreading of a drop of non-Newtonian (power-law) liquid over a horizontal solid substrate is

analyzed theoretically through energy approach method in the case of complete wetting. In this

approach we have used the physical and geometrical reasoning and finally obtained a relation between

the rate of spreading and bottom radius of the drop. It is shown that spreading rate of shear thickening

liquid is more than that of a Newtonian liquid while shear thinning liquid is having slower rate than the

latter one.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fundamental understanding of the spreading mechanism is
important to gain control over several industrial applications. In
general, the spreading process of liquid drop on any substrate is
too complex phenomena. Since, this process depends on many
factors like viscosity, surface tension, density, volatility, solid
surface roughness, texture, chemical heterogeneity, drop size,
even on rheological parameters if the liquid is non-Newtonian etc.
Such type of motion may be defined mathematically through non-
linear differential equation with so many conditions.

Spreading of liquid over solid surface has been studied
extensively from both theoretical and experimental points of
view by several researchers viz. Marmur (1983), Cazabat (1987),
Léger and Silberzan (1990), Ehrhard (1993), Seaver and Berg
(1994), Bahr et al. (1999) and many others. Mainly, the spreading
process can be divided into two categories i.e. high speed impact
spreading and low-speed spreading. In fact, former one is called
the inertia dominated or forced spreading and the latter one is
called surface tension dominated spreading. The spontaneous
spreading occurs when the impact speed is equal to zero. The
forced spreading of liquid drop is widely encountered in case of
spray coating and it is shown that the final shape of the drop
depends on impinging speed only, when the impinging speed is

greater than some critical value and this critical value varies from
liquid to liquid. In last two decades lot of theoretical and experi-
mental models on spreading process of a drop have been reported
in the literature. Most of these models are related to the spreading
of Newtonian liquid on a solid or porous substrate. For Newtonian
liquid, Tanner (1979) first gave an empirical relation between the
rate of spreading over a solid surface with the bottom radius of
the drop. Mainly in the process of spreading, one may think of the
total energy of the drop may be divided into two parts, namely the
energy associated with the volume and the energy associated
with surfaces. For a large drop spreading over an impermeable
surface, the gravitational potential energy is converted into the
kinetic energy of the liquid flow. But when the drop size is too
small (sub-millimeter level), the surface energy dominates the
spreading process. The volume-associated energy for a spherical
droplet of volume V, radius R, mass m and density r can be
represented by its potential energy and this energy is converted to
kinetic energy during flow. Therefore, we have

Ev ¼mgR¼ rVgR¼
4p
3

R4rg: ð1Þ

The surface-associated energy can be estimated as

Es ¼ 4pR2s; ð2Þ

where s is the surface tension of the liquid. Both the energies will
be at par when

Rcapillary ¼

ffiffiffiffiffiffi
3s
rg

s
: ð3Þ
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This Rcapillary is known as the capillary length, see de Gennes
(1985). For a typical silicone oil (TSIL - 080) with s¼ 21�
10�3 J=m2 and r¼ 970 kg=m3, we have Rcapillary � 2:6 mm. If the
droplet size is much smaller than the Rcapillary then the motion is
due to the conversion of the surface energy. de Ruijter et al.
(1999), Aradian et al. (2000), Gu and Li (1998, 2000), Erickson
et al. (2001), Daniel and Berg (2006) and Attané et al. (2007), have
applied energy based model to analyze the different physical
aspects of the drop spreading phenomena. Spreading of a drop of
non-Newtonian liquid has also several industrial applications like
ink-jet printing and spray coating, etc. So the attention of several
researchers (Biswas and Gupta, 1987; Starov et al., 2003; Rafai
and Bonn, 2005; Wang et al., 2007a, 2007b and others) have been
drawn to study the non-Newtonian effects. It is interesting to note
that, so far, to the best of our knowledge, none has considered the
energy approach to study the spreading of a non-Newtonian
liquid drop. In this study, our interest is to analyze the spreading
process based on energy approach only.

2. Theoretical model of spreading

Let us consider a liquid drop placed on a flat solid surface with
vapour/liquid, liquid/solid and vapour/solid interfaces that con-
join at a contact line. The solid is assumed to be chemically
homogenous, smooth and not to be dissolved or react with the
liquid.

Equilibrium shape of a drop is determined by the action of the
interfacial properties of solid, liquid and surrounding gas or vapor.
In other words, the interfacial energy that stored within the drop
starts to dissipate in course of time as a result the drop spreads on
the surface. In this analysis, we have assumed that the volume of
the drop remains constant and its shape is a spherical cap so that
its surface free energy is minimized or in other words the drop
attains its lowest energy configuration. A typical shape of a drop
and its surroundings is represented in Fig. 1.

Helmholtz surface free energy of the drop becomes

FS ¼ sLGALGþsSLASLþsSGASG; ð4Þ

where ALG, ASL and ASG represent the liquid–gas, solid–liquid and
solid–gas interfacial areas, respectively. sLG;sSL and sSG denote
surface tensions of ALG, ASL and ASG, respectively. Further it is to be
remembered here that the change of the free energy takes place
due to geometric shape change of the droplet keeping total volume
fixed. There are number of paths of the evolving process through
which free energy can reduce. Our consideration of the spherical
cap drop shape with its bottom radius a and height h give

FS ¼ pða2þh2ÞsLGþpa2sSLþðAtot�pa2ÞsSG; ð5Þ

where Atot(=ASL+ASG) is the total area of the solid substrate.
Here, surface free energy is expressed in terms of interfacial
energies and two geometrical parameters i.e. a, h. Since, in case of

pure spreading (i.e. spreading on non-porous smooth solid sub-
strates), volume V remains constant and let its initial volume V0

(Tadmor, 2004) with height h depends upon the drop radius a as

V0 ¼
p
6

hð3a2þh2Þ: ð6Þ

Constant volume during spreading process demands

dh

da
¼�

2ah

a2þh2
: ð7Þ

Differentiating Eq. (5) with respect to a and using the value of dh/da

from (7), we get

dFS

da
¼ 2pa cosy�

sSG�sSL

sLG

� �
sLG; ð8Þ

where y is the dynamic contact angle (see Fig. 2). Minimization of
the surface free energy (FS) requires

cosy¼
sSG�sSL

sLG
; ð9Þ

provided real y exists. Existence of y is defined as the equilibrium
contact angle (yV

eq) and we have

cosyV
eq ¼

sSG�sSL

sLG
: ð10Þ

The surface free energy expression is important because it explains
about the driving force for the spreading process, which is often
easier to determine with respect to hydrodynamic approach. From
the above analysis it is not possible to understand how fast the
spreading process takes place until and unless we relate the
geometric change of the liquid/vapour interface and contact line
with the thermodynamic forces acting on them. Assuming the
whole process is isothermal and reversible we have the total
Helmholtz free energy (F) in terms of dissipative process as

dF

dt
¼�S

Z
Vi

mfidV i: ð11Þ

Here, mfi is the local viscous dissipation occurring in a volume
element dVi in the ‘i’th region of the system. The right hand side of
the above equation represents the sum of viscous dissipation
terms. For a single drop, we have

dFS

dt
¼�

Z
V
mfdropdV ; ð12Þ

where V is the volume of the drop. It is to be noted here that our
present system is incompressible and the exchange of liquid from
the drop is prohibited, the only modes of free energy change are
related with the surface. In this case, the free energy change is
equivalent to expression (8). Thus,

2pa½cosyV
eq�cosy�sLG

da

dt
¼

Z
V
mfdV ; ð13Þ

and is equivalent to the viscous energy equation introduced by de
Gennes (1985). We are now interested to calculate the energy
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Fig. 1. Representation of drop surfaces.
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Fig. 2. Representation of balance of interfacial forces in x-direction.
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