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a b s t r a c t

A continuum dislocation model of formation of grains whose boundaries have a non-vanishing thickness
is proposed. For a single crystal deforming in simple shear the lamellar structure of grains with thin
layers containing dislocations as the geometrically necessary boundaries turn out to be energetically
preferable. The thickness and the energy of this type of grain boundary are computed as functions of the
misorientation angle.

& 2015 Published by Elsevier B.V.

1. Introduction

One of the main guiding principles in seeking an appropriate
theory of formation of grains in metals and alloys during and after
cold working processes producing severe plastic deformations has
first been proposed by Hansen and Kuhlmann-Wilsdorf [1] in the
form of the so-called LEDS-hypothesis: the dislocation structures
in the final state of deformation minimize the energy of crystals
(see also [2–4]). The main reason why the formation of grains
becomes energetically preferable at severe plastic deformations
lies in the non-convexity of the energy of crystal in this range [5–
8]. Within the conventional crystal plasticity considered in [5–7]
the minimization of such non-convex energy leads immediately to
the infinitely fine lamellar structure with grain boundaries as
sharp interfaces. However, as mentioned by Kuhlmann-Wilsdorf
and Hansen [4], typical grain boundaries, termed geometrically
necessary boundaries, have as a rule a non-vanishing thickness
and may contain a large number of dislocations and thus contra-
dict the conventional crystal plasticity. The question then arises in
this connection: what kind of continuum model may resolve this
conflict? The present paper proposes a dislocation model of for-
mation of grains within the continuum dislocation theory [9,10]
which predicts the existence of such geometrically necessary
boundaries. By including the energy of dislocation network con-
taining the gradient of the plastic slip into the energy functional

we regularize the non-convex energy minimization problem. It
should be mentioned that the idea of adding the gradient term as
the interfacial energy into the non-convex energy functional was
proposed already in the 50s by Cahn and Hilliard [11] (see also the
review of the recent phase-field approach in [12]). However, to the
best of our knowledge, such gradient term having the clear
meaning of the energy of dislocation network regularizing the
non-convex energy in the context of crystal plasticity is proposed
in this paper for the first time. We illustrate the application of the
theory on the example of single crystal having one slip system and
deforming in simple shear. We show that the geometrically ne-
cessary boundaries, in which the transition from one grain to the
next occurs smoothly, have a small but finite thickness and contain
a large number of dislocations. Although the resultant Burgers
vector of dislocations in such grain boundary is non-zero, they do
not produce long range stresses, and the lamellar structure of
grains is in fact the low energy dislocations structure. We also
compute the thickness of geometrically necessary boundaries and
their energies as functions of the misorientation angles. Based on
these results we estimate also the number of grains in terms of the
specimen sizes. We show that the proposed theory agrees well
with the experimental observations during ECAP experiment [13].

2. Continuum theory of formation of grains

We consider for simplicity an initially dislocation-free single
crystal having only one active slip system. In this case the
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kinematic quantities characterizing its observable deformations
are the placement field y x( ) and the plastic slip field xβ ( ). The
incompatible plastic deformation is given by

F x I x s m,p β( ) = + ( ) ⊗

with the pair of constant and mutually orthogonal unit lattice vectors
s and m denoting the slip direction and the normal to the slip planes
respectively. Using the multiplicative resolution of the total compa-
tible deformation gradient F y x/= ∂ ∂ into the plastic and elastic parts
[10], we find the incompatible elastic deformation in the form

F F F
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·( − ⊗ )−

The tensor of dislocation density measuring the incompatibility of
Fp reads (see [5,10])

T F s m .p β= − × ∇ = ⊗ (∇ × )

If, in addition, all dislocation lines are straight lines parallel to the
unit vector l, then the scalar dislocation density (or the number of
excess dislocations per unit area perpendicular to l) can be de-
termined as

b b
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,ρ β= | · | = |(∇ × )· |

with b being the magnitude of Burgers vector.
For crystals having as a rule small elastic strains we propose the free

energy per unit volume of the undeformed configuration in the form
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Here E F F Ie eT e1
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= ( · − ) corresponds to the elastic strain tensor, λ
and μ are the Lamé constants, k a material constant, and ρs can be
interpreted as the saturated dislocation density. The first two
terms in (1) represent energy of crystal due to the macroscopic
elastic deformation. The last term describes energy of the disloca-
tion network for moderate dislocation densities. Note that for
small or extremely large dislocation densities close to the satu-
rated density the logarithmic energy proposed in [14] is more
appropriate. We deform this crystal occupying in the initial
configuration some region of three-dimensional space by
placing it in a displacement-controlled device such that, at the
boundary ∂ , the conditions

y x F x x x, 0 for 2β( ) = ¯ · ( ) = ∈ ∂ ( )

are specified, with F̄ being a given overall deformation. If the de-
formation process is isothermal, no body force acts on this crystal,
and the resistance to the dislocation motion can be neglected, then
the following variational principle turns out to be valid: the true
placement vector y xˇ ( ) and the true plastic slip xβ̌ ( ) in the final
equilibrium state of deformation minimize the energy functional

I w dxy x x F, , , 3∫β β β[ ( ) ( )] = ( ∇ ) ( )

among all continuously differentiable fields y x( ) and xβ ( ) satisfying
constraints (2), where w F E, , ,eβ β ψ ρ( ∇ ) = ( ). We will see that, due
to the non-convexity of the free energy density (1) and the
presence of β∇ in the energy functional via the energy of the
dislocation network, the formation of grains with regular grain
boundaries having a finite thickness is energetically preferable.

3. Energy minimizer in plane strain simple shear

Consider now the special case of plane strain simple shear of
the specimen in the form of a cuboid of height H, width L, and

depth D such that y x3 3= , while y x1( ), y x2 ( ) and xβ ( ) depend only
on two cartesian coordinates x1 and x2 and satisfy at the side
boundary the conditions

y x x y x, , 0,1 1 2 2 2γ β= + = =

with γ being the overall shear strain. We assume that
s cos , sin , 0T φ φ= ( ), m sin , cos , 0T φ φ= ( − ) and all dislocation
lines are parallel to the x3-axis, so bs /ρ β= |∇ · | . If the deformations
are uniform such that

F F I e e F I s m, ,p
1 2γ β= ¯ = + ⊗ = + ⊗

with γ and β being the constants, then the energy (3) normalized
by μ| | and minimized with respect to β turns out to be non-
convex for /2, 0φ π∈ ( − ) as shown in Fig. 1 (see [8]).

In view of this non-convexity, we proposed in [8] the energy
minimizing sequence consisting of layers having the uniform
states A and B according to

0, 2 cot ,

0, 2 cot ,

A B

A B

γ γ φ

β β φ

= = −

= =

such that the volume fraction of the layer B is given by
s / 2 cotγ φ= − ( ). It has been shown in [8] that such candidates for
the minimizer satisfy the equations of equilibrium in each layer as
well as the outer boundary conditions except at the side bound-
aries x L0,1 = of the specimen. Besides, the energy of such lamellar
structure is equal to zero which is the minimal possible value.
However, if the boundaries between layers are sharp interfaces,
these candidates do not belong to the set of admissible fields of
our original variational problem (2) and (3) due to the jumps of F
and β on those interfaces, so they fail to be the energy minimizers
of (2) and (3).

To correct the behavior of those candidates for minimizers we
assume now that the layers corresponding to the states A and B
are separated by a thin layer of small thickness h in which the
placement and plastic slip change smoothly from state A to state B
(see Fig. 2). Since this boundary layer is thin (h is much smaller
than sH, s H1( − ) , and the sizes of the specimen), it is reasonable to
assume that the displacement in the x2-direction is zero, while the
displacement in the x1-direction and the plastic slip depend only
on x2:

y x u x y x x, , .1 1 2 2 2 2β β= + ( ) = = ( )

With this Ansatz it is easy to show that the determination of
functions u x2( ) and x2β ( ) as well as the unknown boundary layer
reduces to minimizing the following functional:
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Fig. 1. Condensed energy e γ( ) and the dimensionless shear stress e′ γ( ) for
45φ = − °.
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