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a b s t r a c t

The paper addresses the issue of the plastic and creep deformation of tin, a material with low melting
point; main attention is focused on its plastic deformation and steady-state creep. The modelling of
these deformations has been accomplished in terms of the synthetic theory of permanent deformation
whose main peculiarity is only one constitutive equation governs both plastic and creep deformation.
The stress–strain as well as strain-rate vs. stress diagrams constructed on the base of this theory show
good agreement with experimental data.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Tin's main uses are in tin plating, solder, coating, and in the
manufacturing of chemical compounds which are used in a variety
of ways. Tin and its alloys, due to their low melting temperatures
and wide availability, are the most commonly used solder materials.

In electronic assemblies, solder joints serve as both electronic
connection and mechanical support for components and sub-
strates. They play crucial roles in the reliability of joint assemblies
in electronic packaging because they provide electrical, thermal
and mechanical continuity in electronic assemblies. During ser-
vice, they are subjected to many thermo-mechanical stresses and
hence stand as one of the weakest point in assembly and usually
determine the lifetime of the whole component.

The melting point of tin (Sn) is very low (505 K), and thus,
deformation at the ambient temperature corresponds to the hot
working temperature region in this metal. Since room temperature
gives the high value of homology temperature for tin, its plastic
flow is accompanied by active softening processes that manifest
themselves in the following thermal activated processes (i) dynamic
recrystallization, (ii) diffusion of atoms unlocking dislocations from
obstructions in their path (solute atmospheres, precipitate particles,
dislocation jugs, and dislocation tangles), i.e. dislocations become
mobile and are able to cross-slip and climb, break away from their
obstacles and cut through the forest dislocations, and (iii) disloca-
tion annihilation, etc. As a result, tensile experiments on pure tin
specimens exhibit a typical σ–ε curve, which yields work hardening
in the early stage of straining, followed by steady state flow stress

(see Fig. 1). Fig. 1 represents the true stress–strain relation calcu-
lated on the basis of nominal stresses and strains obtained by
tensile testing. Since the synthetic theory models only small strains,
the problem of necking is not considered here.

Much research has been done to address the mechanical
properties of Sn and Sn-based alloys. Basic studies of irrecoverable
deformation in metals with the low melting point such as lead or
tin were mostly conducted before 1980, Mohamed et al. [8],
Bolling [3]. Among the later researches Adeva et al. [1], Hamada
et al. [5], Miltin et al. [7], Nagasaka [9] and Suh et al. [14] can be
proposed. All the authors point to the multifactor nature of the
phenomenon discussed, it depends on the temperature of experi-
ments, the loading rate, as well as the stress range, determining
which mechanism, hardening or softening, dominates.

The purpose of this paper is to present a model aimed at
analytical description of the irrecoverable (both plastic and steady-
state creep) deformation of tin. This model is the synthetic theory
of irrecoverable deformation [12]. The main feature of this theory
is a uniform approach to calculate any form of deformation, i.e.
formulae for both plastic and (un)steady-state creep strains are
derived from a single constitutive equation.

2. Synthetic theory

2.1. Synthetic theory as two-level model

The synthetic theory is based on the Batdorf–Budiansky slip
concept [2] and the Sanders flow theory [13] and deals with small
irrecoverable (plastic/creep) deformations of hardening materials
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(the case of finite deformation is considered in [15]). This theory
incorporates (synthesizes) a physical interpretation of the devel-
opment of irrecoverable strain (slip concept) and its mathematical
representation via a flow theory (the Sanders theory).

Similarly to the Batdorf–Budiansky concept, the deformation of
material is calculated on its two structural levels: macro- and micro-
level. A point of a body is considered as an elementary volume of the
body, V. The volume V consists of a large quantity of microvolumes
(grains), V0, each being an element of the continuous, capable of
deforming under the applied forces (Fig. 2). The mechanism of
irrecoverable deformation within the microvolume V0 is slip of
one part of V0 in relation to another. It is assumed that the number
of V0 is so great (theoretically it tends to infinity) that every possible
orientation of slip systems exists within volume V. Accordingly to
Budiansky, the stress state in every volume V0 (slip system) is the
same as that in the volume V. The stress acting in V is obtained in a
conventional way by solving the equilibrium equation of the body
together with consistency and boundary conditions (the problem is
the simplest for the case of e.g. tension, or torsion when a homo-
genous stress distribution is observed). It must be noted that, in
contrast to a uniform distribution of the stress among microvolumes
V0, the magnitude of slip strongly depends on the orientation of the
slip system relative to the direction of the acting stresses. The total
deformation in V is determined as the sum of micro-deformations
developed in volumes V0.

The modeling of irrecoverable deformation takes place in the
three-dimensional subspace (ℛ3) of the Ilyushin five-dimensional
space of stress deviators, ℛ5 [6]. The loading process is expressed
by a stress vector, S

!
, whose components are converted from the

stress deviator tensor components – Sij (i; j¼ x; y; z) – as follows
[11] (Rusinko and Rusinko, 2011):
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where Sij ¼ σij�σδij, and δij is Kronecker's delta,
σ ¼ ð1=3ÞP3

i ¼ 1 σii. The length of vector S
!

(S) equals to the von-
Mises (effective) stress, i.e. is related to the second invariant of
stress deviator tensor, J2, as S¼

ffiffiffiffiffiffiffi
2J2

p
¼ σef f .

3. Microlevel

3.1. Yield criterion

The locus of the onset of residual deformation in ℛ3 is a sphere
of radius

ffiffiffiffiffiffiffiffi
2=3

p
σP , which corresponds to the von-Mises yield

criterion,

S21þS22þS23 ¼ 2=3σ2
P ; ð2Þ

where σP is a creep limit of material in uniaxial tension. The
criterion (2) contemplates that the creep limit of material is taken
as its constant at a given temperature, while its yield strength (σS)
is a function of loading rate, σS ¼ f

_
S
!

;σP

� �
, where the formula for

f will be shown later.
According to Sanders [13], through each point on the sphere we

draw a tangent plane. So, the yield surface can be thought of the
inner envelope of the equidistant planes.

The position of plane in ℛ5 is defined by the following two
quantities: (i) the unit vector N

!
normal to the plane, and (ii) the

distance from the origin of coordinates to the plane, HN . Since we
assume that S

!
Aℛ3 it is quite sufficient to consider the projec-

tions of ℛ5-planes on ℛ3 whose orientations are given by unit
vector m! normal to the plane tangential to sphere (2). The
orientation of m! is established by spherical angles α and β as
shown in Fig. 3, and a relationship between the N

!
and m!

components is Nk ¼mk cos λ (k¼ 1;2;3), where λ is an angle
between N

!
and m! [11] (Rusinko and Rusinko, 2011). Despite the

fact that S
!

Aℛ3, all the planes, both tangent to sphere (2) and the
traces of planes tangential to the five-dimensional yield surface
(which fill the space beyond the sphere (2)), must be taken into
account. It is the angle λ that makes it possible to distinguish
between these planes.

3.2. Hardening rule

To establish a hardening rule, we extend the provision that a
surface can be constructed as an inner envelope of planes to the

Fig. 1. Stress vs. strain diagram of tin at home temperature; ● – experiment [5], line
– analytical result, and dot-dash line – analytical result without accounting for
dynamic softening.

Fig. 2. Two levels of material structure: an elementary volume of loaded body (V) consists of grains (slip systems) V0 producing deformation on microlevel.
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