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a b s t r a c t

Thermoset nanocomposites (TSNCs) may offer significantly improved performance over conventional

thermoset materials, and thus are attractive for wide industrial applications, especially in the coating

industry. Design of TSNCs via experiment, however, faces various technical challenges due to design

complexity. Computational design can provide deep insights and identify superior design solutions

through exploring opportunities in a usually huge design space. This paper introduces a generic

computational methodology for the design, characterization, and testing of TSNC-based coatings. A

distinct feature of the methodology is its capability of generating quantitative correlations among

material formulation, processing condition, coating microstructure and property, coating performance,

and processing efficiency. The correlations can enable a comprehensive analysis for optimal TSNC

coating design. Case studies will demonstrate the methodological efficacy and attractiveness.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Development of thermoset nanocomposites (TSNCs) for coat-
ing applications has drawn increasing attention over recent years.
This type of nanocomposites is usually designed by adding a small
amount of organo-modified inorganic nanoparticles into a con-
ventional thermoset resin. The resulting material is then applied
to a substrate and cured at an elevated temperature to form a
coating layer. TSNCs, when compared with conventional thermo-
set polymers, are capable of substantially improving coating
performance, in terms of coating’s mechanical, barrier and flame-
retardant properties, and even possessing new functionalities, e.g.,
self-cleaning and self-healing. It is believed that TSNCs will have
wide industrial applications (Kotsikova, 2007).

In TSNC development, a deep understanding of the dependence
of coating properties on material composition is essential. Various
experimental efforts have been made to reveal the dependence.
Nobel et al. (2007) developed a number of waterborne nanocom-
posite resins for automotive coating applications. It was found
that an incorporation of needle-shaped Boehmite, disc-shaped
Laponite, or plate-shaped Montmorillonite into an aqueous acrylic
resin could increase dramatically the stiffness of the cured film
and make the rheology of the binder more adjustable. Jalili et al.
(2007) investigated a number of nanocomposite polyurethane
coatings. It was shown that adding 4–8 wt% of hydrophobic

nano-silica to a two-pack acrylic polyol polyurethane clearcoat
could enhance the coating’s morphological, rheological, mechan-
ical, and optical properties. Hosseinpour et al. (2005) showed that
an acrylic-melamine resin filled with spherical, polar-surface-
treated alumina particles could improve greatly the mechanical
performance of the coating.

The existing studies have improved the understanding on TSNC
materials and their correlation to the properties of the nanos-
tructured coatings. However, due to the existence of a large
number of adjustable material parameters, the identification of an
optimal formulation solely through experiments is extremely
challenging. It must be pointed out that computational material
design can provide us with impressive freedom and control over
the investigated material parameters and product properties
through allowing virtually any number of in silico experiments.
Moreover, computational modeling and simulation should greatly
facilitate identification of vast correlations among material,
microstructure, property, and performance. Nevertheless, there
has been no such a computational methodology available for
investigating TSNCs.

The known computational studies on polymer nanocomposite
materials are nearly all for thermoplastic nanocomposites (TPNCs)
(see Zeng et al., 2008). Molecular dynamics (MD) simulation (Starr
et al., 2002; Bedrov et al., 2003) and lattice and off-lattice Monte
Carlo (MC) simulations (Vacatello, 2001, 2002; Zhang and Archer,
2004; Ozmusul et al., 2005; Dionne et al., 2006) are among the
techniques used to investigate polymer chain conformation,
nanoscale interactions, and material structural evolution and
properties. Investigation of TSNCs is much more challenging. First,
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the polymeric material structural complexity in terms of the
molecular weight distribution and the functional group distribu-
tion must be taken into account. Second, multiple inter-correlated
chemical and physical phenomena occurred during the coating
formation process have to be properly characterized. Note that a
thermoset material must undergo a crosslinking reaction process
in coating formation, but this is not the case for a thermoplastic
material application.

Most of the computational studies on structure–property
correlations for polymer nanocomposites are focused on model-
based mechanical property quantification. The continuum-based
micromechanics methods (e.g., Eshelby, Halphin-Tsai, and finite
element based) and the non-continuum-based nanomechanics
methods (e.g., MC, MD, and molecular mechanics based) are the
two major types of techniques (Valavala and Odegard, 2005).
Recently, multiscale methods received a great deal of attention
(Sheng et al., 2004; Zeng et al., 2008), since they can characterize
appropriately the hierarchical morphology of polymer nanocom-
posites, which is essential for accurate prediction of material
properties. It has been noted by experimentalists that the detailed
knowledge of the structure of crosslinked polymer network
matrix is essential for developing structure–property relation-
ships in TSNC systems (Bharadwaj et al., 2002; Nobel et al., 2007;
Pluart et al., 2005). However, the known computational methods
are insufficient in studying TSNCs, because they either address
thermoplastic polymer matrix only or neglect detailed informa-
tion about the microstructure of polymer matrix.

As the goal of this work is to extend the fundamental
knowledge and conduct optimal design of TSNC coatings; a main
focus of this paper is to develop a comprehensive computational
methodology for in silico synthesis (fabrication), characterization,
and testing of TSNC coatings. This methodology should establish
systematic correlations between material formulation, processing
condition, coating microstructure, property, and performance. In
the following text, a coarse-grained modeling method is intro-
duced for TSNCs characterization at the outset. Then, a detailed
simulation method for generating TSNC coating samples is
described. Succeedingly, a unique microstructure characterization
method is presented in order to gain insights into the structure–
property correlation. After that, a computational tensile test
method is proposed, which can be used to reveal the stress–
strain behavior and evaluate the scratch resistance performance of
the coatings. The methodological efficacy will be demonstrated
through a comprehensive study on the design and analysis of a
TSNC material.

2. General modeling of TSNCs

To fully characterize TSNCs, a modeling method must be
capable of describing the polymeric material and nanoparticles in
a 3D space of a computational environment and quantifying the
interactions between them.

2.1. Polymer network model

Kremer and Grest (1990) introduced a coarse-grained bead-
spring (CGBS) model. In that model, each polymer chain is
represented by a sequence of equal-size beads (i.e., effective
monomers) connected by anharmonic springs (i.e., bonds). In this
work, the original CGBS model is extended, where each cross-
linker is represented by a bead with the same size as an effective
monomer, and a bond created by reactions connects an effective
monomer and a crosslinker by the same type of spring in a
precursor polymer chain.

The potential energy between each pair of non-bonded
polymer beads i and j, designated GI

i;j, can be evaluated by the
Lennard–Jones (LJ) potential as follows:
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where ri;j is the distance between beads i and j; epp is an energy
parameter; s is a distance parameter; rpp

min and rpp
max are,

respectively, the minimum distance and the cutoff distance
between any two polymer beads. Note that the potential energy
is set to zero when ri;j4rpp

max.
The potential energy between each pair of bonded beads i and

j, denoted GII
i;j, can be evaluated by both the finite extension

nonlinear elastic (FENE) potential and the LJ potential (Kremer
and Grest, 1990), i.e.,
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where m is a spring constant; lbmax is the maximum allowable bond
length.

2.2. Nanoparticle model

In this work, only spherical nanoparticles are investigated.
Each nanoparticle is represented by a single (spherical) bead. The
polymer beads interact with the nanoparticle beads through the
following potential (Vacatello, 2001, 2002):

GIII
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where GIII
i;j is the potential energy shared by polymer bead i and

nanoparticle bead j; epn is an energy parameter, whose value is
related to the size ratio of a nanoparticle bead to a polymer bead;
Rn is the nanoparticle radius; rpn

min and rpn
max are, respectively, the

minimum distance and the cutoff distance between a nanoparticle
bead and a polymer bead.

The interaction potential between two nanoparticle beads can
be evaluated as

GIV
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where GIV
i;j is the potential energy shared by nanoparticle beads i

and j; enn is an energy parameter; rnn
min and rnn

max are, respectively,
the minimum distance and the cutoff distance between two
nanoparticle beads.

Note that the values of the minimum distance and the cutoff
distance in Eqs. (1)–(4) are determined based on the potential
energy. At the minimum distance, the potential energy should be
larger than 50epp. At the cut-off distance, the absolute value of the
potential energy should be smaller than 0.017epp. Also note that in
this work, instead of modeling a nanoparticle as a cluster of beads
(Starr et al., 2002; Cho and Sun, 2007), each nanoparticle is
simplified as a single bead. It can help decrease the number of
interaction potentials to be calculated in the simulation; thereby
improving computational efficiency. However, the simplification
may not be applicable to the cases where nanoparticles are
significantly larger than the polymer beads and the shape change
of nanoparticles is not negligible. In such circumstances, the
treatment of a nanoparticle as a cluster of beads should be
preferred.

J. Xiao et al. / Chemical Engineering Science 65 (2010) 753–771754



Download	English	Version:

https://daneshyari.com/en/article/157509

Download	Persian	Version:

https://daneshyari.com/article/157509

Daneshyari.com

https://daneshyari.com/en/article/157509
https://daneshyari.com/article/157509
https://daneshyari.com/

