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a b s t r a c t

In this paper the texture evolution in nano-indentation experiments was investigated numerically.
To achieve this, a three-dimensional implicit finite-element model incorporating a strain-gradient
crystal-plasticity theory was developed to represent accurately the deformation of a body-centred cubic
metallic material. A hardening model was implemented to account for strain hardening of the involved
slip systems. The surface topography around indents in different crystallographic orientations was
compared to corresponding lattice rotations. The influence of strain gradients on the prediction of lattice
rotations in nano-indentation was critically assessed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Indentation is an experimental method widely used to charac-
terise the mechanical response of small volumes of materials [1–3].
Although indentation experiments are easy to perform, interpreting
the obtained data is a challenge due to the inherent heterogeneity
of the deformation fields, complex stress/strain distributions in the
tested material and the non-trivial contact conditions during the
process. Consequently, numerical simulation techniques are fre-
quently used to study the underlying mechanics in indentation
experiments. For instance, deformation-induced lattice rotations
below an indent have attracted attention as there exists a close
connection between crystallographic shear, the main mechanism
governing the deformation, and the resulting lattice spin [4].

Some studies have attempted to characterise the observed
phenomena, with the use of different techniques such as the non-
destructive 3D synchrotron diffraction method [5], 3D electron back-
scattered diffraction (EBSD) [4] and transmission electron micro-
scopy (TEM) [6,7].

In this regard, a limited number of numerical studies attempted to
analyse physical deformation mechanisms leading to lattice rotations
[8,9]. Wang et al. [10] demonstrated lattice rotations for a single crystal
of Cu with different orientations using a 3D elastic–viscoplastic crystal-
plasticity (CP) finite-element (FE) method. Zaafarani et al. proposed a

physically based crystal-plasticity model based on dislocation-rate
formulations to explain the potential reasons for deformation-in-
duced patterns consisting of multiple narrow zones with alternating
crystalline rotations [11]. However, the model consistently overesti-
mated the extent of lattice rotations in the experiment.

Strain-gradient plasticity theories [12–16] that account for the
effects of geometrically necessary dislocations (GNDs) [17] on plastic
flow had some success in explaining size effects observed in torsion
[18], bending [19] and indentation [20–22]. In this paper, a 3D non-
local elastic–viscoplastic crystal-plasticity finite-element model for
the nano-indentation of Ti–15V–3Al–3Sn–3Cr (Ti–15–3–3–3) is
developed to demonstrate the influence of strain gradients on the
reorientation of the crystalline lattice and resulting deformation
patterns. The relationship between the anisotropy of surface profiles
around nano-indents and local texture changes is studied.

This paper is organised as follows: a brief self-contained descrip-
tion of constitutive equations of the strain-gradient crystal-plasticity
theory is presented in Section 2. Details of the developed finite-
element model of nano-indentation are presented in Section 3.
Section 4 demonstrates the predictive capabilities of the model for
lattice rotations and surface profiles for different crystallographic
orientations. We finally offer concluding remarks in Section 5.

2. Theory

An enhanced modelling scheme for a strain-gradient crystal-
plasticity (EMSGCP) theory proposed by Demiral [23] was used in
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the simulations. Below, the constitutive relations of the theory are
summarised.

The deformation gradient F is decomposed multiplicatively
into elastic (Fe) and plastic (Fp) parts as follows:

F ¼ FeFp: ð1Þ

Fp evolves according to the flow rule

_F
p ¼ LpFp; ð2Þ

where the plastic velocity gradient Lp corresponds to

Lp ¼ ∑
N

α ¼ 1
_γαsα � mα: ð3Þ

In Eq. (3), _γα is the shearing rate on the slip system α, which is
represented by the slip direction sα and the slip plane normal mα .
We choose a power-law representation for _γα , as

_γα ¼ _γα0 sgnðταÞ τ
α

gαT

����
����
n

; ð4Þ

where _γα0 is the reference strain rate, n is the macroscopic rate-
sensitivity parameter, τα is the resolved shear stress, gαT is the
strength of the slip system α at the current time, and sgn(n) is the
signum function of n.

In the EMSGCP theory, the initial strength of slip systems, i.e.,
the critical resolved shear stress (CRSS), is governed by pre-existing
GNDs in the workpiece together with statistically stored disloca-
tions (SSDs) (Eq. (5)), i.e., gαT jt ¼ 0 ¼ gαS jt ¼ 0þgαGjt ¼ 0. Here, a sub-
script G indicates GNDs and S implies SSDs. In this theory, gαS jt ¼ 0

and gαGjt ¼ 0 were linked with initial SSD (ραS jt ¼ 0) and GND (ραGjt ¼ 0)

densities as gαS jt ¼ 0 ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ραS jt ¼ 0

p
and gαGjt ¼ 0 ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρjt ¼ 0ðS=VÞ2

q
via

the constant, K, similar to the Taylor relation. The GND density
term was expressed as a function of the normalised surface-to-
volume (S=V) ratio (hence, dimensionless) for the component
under study [24].

The evolution of slip resistance during loading is the result of
hardening due to the SSDs (ΔgαS ) and GNDs (ΔgαG) on the slip
system.

gαT ¼ gαS jt ¼ 0þgαGjt ¼ 0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔgαS Þ2þðΔgαGÞ2

q
;

ΔgαS ¼ ∑
N

β ¼ 1
hαβ Δγβ ; ΔgαG ¼ αTμs

ffiffiffiffiffiffiffiffi
bnαG

q
: ð5Þ

Here hαβ , αT , μs, b and nαG correspond to the slip-hardening
modulus, the Taylor coefficient, the shear modulus, the Burger
vector and the effective density of geometrically necessary dis-
locations, respectively. The hardening model proposed by Peirce
et al. [25] is used to represent hαβ , as follows:

hαα ¼ h0sech
2 h0 ~γ
gαT jsat�gαT jt ¼ 0

����
����; hαβ ¼ qhααðαaβÞ; ~γ ¼∑

α

Z t

0
j _γαjdt;

ð6Þ

where h0 is the initial hardening parameter, gαT jsat is the saturation
stress of the slip system α, q is the latent hardening ratio, which is

assumed to be 1, and ~γ is the Taylor cumulative shear strain on all
slip systems. The effective GND density (nαG) is given by

nαG ¼ jmα �∑
β
sαβ∇γβ �mβj; ð7Þ

where sαβ ¼ sαsβ and ∇γβ is the gradient of shear strain in each
slip system. To calculate ∇γβ the scheme proposed in Demiral
et al. [24] is followed. The model was implemented in the impli-
cit finite-element code ABAQUS/standard using the user-defined
material subroutine (UMAT). Relevant details can be found in
[21,24,26,27].

It should be noted that as the S=V ratio is negligibly small in
nano-indentation samples, the CRSS value of slip systems depends
only on SSDs. Therefore, for the nano-indentation test, the EMSGCP
theory naturally reduces to the mechanism-based strain-gradient
crystal-plasticity theory proposed by Han et al. [28]. Note that in the
classical CP theory the contribution from both incipient and evolving
GNDs is not accounted for, i.e., instantaneous strength of the slip
system is given by gαT ¼ gαS jt ¼ 0þΔgαS .

Here, a β-Ti alloy with a b.c.c. crystalline structure is studied. In
the following simulations only the {112} 〈111〉 slip system (Table 1)
was considered [24].

3. Finite-element modelling of nano-indentation

A FE model of the indentation experiment was developed [24].
Dimensions of the workpiece sample used in the FE model were
10 μm�10 μm�6 μm. Eight-node linear brick elements (C3D8)
were used to discretise the sample. A finer mesh with a minimum
element size of 100 nm was used near the indenter tip as the
strain gradients are typically the highest in the vicinity of the
indenter. A conical indenter with θ¼901 and a tip radius of 1.0 mm
was modelled as a rigid body. The indenter was displaced in the
negative y-direction with a maximum indentation depth of
375 nm followed by complete unloading. The total simulation
time was 1.2 s with loading time of 1.0 s. The bottom face of the
workpiece was constrained in all directions, its faces with normals
in the x- and z-directions were constrained, respectively. Contact
between the indenter and workpiece was assumed to follow
Coulomb's friction law with μ¼0.05 [23].

The material parameters used in the simulations are listed in
Table 2. These are based on their exhaustive calibration by matching
the surface profile of the indented surface along a path with the

Table 1
Available slip systems for Ti alloy single crystal for {112} 〈111〉 set.

Slip system 1 2 3 4 5 6 7 8 9 10 11 12

Direction 111 111 111 111 111 111 111 111 111 111 111 111
Plane 112 112 112 112 121 121 121 121 211 211 211 211

Table 2
Material parameters for Ti-alloy single-crystal micropillars used in the model of the
micropillar-compression experiment Demiral et al. [24].

Elastic constants (GPa) CP parameters EMSGCP parameters

C11 ¼ 127:740 _γα0 ¼ 10�4 s�1 αT ¼ 0:7

C12 ¼ 118:850 n¼ 15 μs ¼ 13:980 GPa
C44 ¼ 43:997 gαT jt ¼ 0 ¼ 150 MPa b¼ 2:803� 10�7 mm

gαT jsat ¼ 170 MPa
h0 ¼ 10;000 MPa
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