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a b s t r a c t

In this work, uniaxial tensile loading was simulated to explain the effect of the interface and varying
particle shapes in particle reinforced composite models based on experiments. The cohesive element
technique was applied alongside an ABAQUS user-subroutine UVRAM. The effect of the interface
thickness and strength were also considered. The simulation results for various stress states (such as
stress triaxiality, soft coefficient and Lode parameter) and the interface degradation Scalar Stiffness
Degradation Variable (SDEG) were analyzed in detail. The particle shape and interface geometry strongly
influenced the distribution of stress states, eventually influencing the integrity of the particle reinforced
composites. Particles with a large aspect ratio that were also perpendicular to tensile loading direction
were easy to crack, while those with a smaller aspect ratio were prone to interface debonding from
particle poles.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Particle reinforced composites are well known because they have
promising features, such as high strength, low density and wear
resistance [1–3], that have led to their widespread application.
However, their low fracture toughness and ductility has hindered
their extensive usage. The micro/macroscopic behavior of these
composites is explained in detail in Refs. [4–7]. The mechanical
properties of these materials are governed by factors including particle
size [8–11], particle shape [12–15], particle orientation [16], local
volume fraction [17], nearest neighbor particle distance [18], nearest
neighbor orientation [19,20], spatial distribution [21,22], etc.

In contrast to macroscopic study, microscopic study has revealed
that certain factors, including the particle, matrix and interface, are
important when determining various key characteristics [7,23].
To date, different particle shape models have been applied during
Finite Element Analysis (FEA). The most commonly used methods
include the Representative Volume Element (RVE) [13,24], the
Voronoi Cell method [14], Real Morphology model in 2D [22] and
the Serial Section Technology (SST) that is also used to construct a
three dimensional finite element model and is more similar to the
real material [14,17,18,22,25,26]. As displayed in Fig. 1, the metal

matrix composite (MMC) simulation model is plotted as a
RVE model.

In the MMC of Al–SiC, the SiC particles are load bearing under
certain loading conditions, including particle fracture, that are in
accordance with the Weibull statistical distribution [11,12,19,26–29].
The higher the overall SiC particle content under the same applied
stress is, the higher the particle fracture volume fraction is. Fracture
toughness and ductility also correspond to the SiC particle volume
fraction and the increasing SiC particle volume fraction, as well as
decreased ductility and fracture toughness. Particle size also con-
tributes to the aforementioned mechanical properties. Ductility and
fracture toughness decrease when the SiC particle size decreases. Qin
et al. [15] has reported that particle shape dramatically affects the
thermal residual stress and strain fields in composites. Zhao et al.
[12,28] have considered two types of partial debonding configura-
tions: one on the top and bottom of the aligned oblate inclusion and
one on the lateral surface of the prolate ones with a special reference
for spherical inclusion. Using a Cohesive Zone Type model, Needle-
man [30,31] studied the process of void nucleation via inclusion
debonding. Maire et al. [32] have revealed that initially elongated
particles are easy to crack before debonding the particle matrix
interface particles that are characterized by high aspect ratios, large
sizes and low local volume fractions. Kim and Lee [33] have proposed
a micromechanics-based elastic-damage model that accounts for
cumulative damage and predicts the effective stress–strain response.
A multi-step damage process is introduced to model accumulated
damage induced by interfacial debonding in the particulate compo-
sites. Li [26] has found that larger particles in particle-rich regions are
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more susceptible to cracking than those in sparse regions, while the
spatial distribution of the particles is more important when assessing
damage than particle size is for MMCs.

2. Theory and experiments

2.1. Cohesive zone models

Cohesive Zone models are used to explain the failure mechan-
ism involved in MMCs. Cohesive damage–cracking processes use a
traction–displacement relationship to describe the cohesive ele-
ment model by applying the model forms (bilinear, trapezoidal,
exponential and so on.) [21,29]; this Traction–Separation Law is
presented in Fig. 2.

The traction–separation response is explained relative to the
critical interface strength; this parameter is the free cohesive
energy potential of separation per unit area, specifically cohesive
energy ϕ, and equals the area enclosed by the cohesive curve and
the horizontal axis.
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represent the normal and tangential directions,
respectively, while δn and δt are the corresponding directions for
the opening displacements over the cohesion. An effective open-
ing displacement can be defined as follows:
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The bilinear traction–separation model can be described as
follows:
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where Tn and Tt correspond to a separation distance δ when the
separation is purely normal or tangential, respectively. The bilinear
relations for solving the cohesive element softening relationship
include the following: when the plastic zone crack tip displace-
ment is below the damage threshold, i.e., the separation distance
is expressed as δoδ0, and the applied stress is expressed as
s¼ Kδ; for δ0oδoδf the applied stress is s¼ ð1�DÞKδ, where

D is the scalar damage variable that is defined as follows [34]:

D¼ δfmðδmax
m �δ0mÞ

δmax
m ðδfm�δ0mÞ

ð4Þ

where δmax
m refers to the maximum value of the effective displace-

ment attained during the loading history and δfm can be obtained
through using the final separations. Within the cumulative
damage variable D ranging from 0 to 1, the cohesive element
represents a complete loss of traction at the critical separation
distances δfn and δft under normal and tangential cases. When the
cohesive release energy reaches the energy damage threshold,
local micro-damage will occur; the cohesive zone will enter the
softening stage, and the overall stiffness weakening coefficient
Scalar Stiffness Degradation Variable (SDEG), which describes the
overall scalar damage variable D [34], will decrease gradually.
When D equals 1, it is called the elemental loss of traction and the
separation distance is expressed as δ4δf ; SDEG is 1, correspond-
ing to the maximum traction at the crack nucleation point smax.

2.2. State of stress parameters

To describe the deformation stress states, three parameters are
adopted:

Rs ¼
sm
seq

¼ ðs1þs2þs3Þ=3
1ffiffi
2

p
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where s1Zs2Zs3 are the three principal stress, sm and seq are
the hydrostatic stress and equivalent Von Mises stress, respec-
tively, and ν is Poisson's ratio. According to the microscopic
mechanism, stress triaxiality (Rs) describes the advantages of the
void mechanism over the shear mechanism during material
deformation. For the high triaxiality stress, the void mechanism
dominates such that the voids expand faster in deformed materi-
als. When the triaxiality stress is low and the shear strain is high,
the shear mechanism will dominate. When Rs is positive, the
deforming material tends to be in the tensile state, allowing the
microcracks to grow; however, when Rs is negative, it tends to be
in a compressive state, causing the microcracks to close. Rs ranges
from �1 to þ1, and its characteristic values are 1/3 for uniaxial
tensile stress (s, 0, 0) with s40, zero for pure shear (s, �s, 0), and
�1/3 for uniaxial compression (s, 0, 0) with so0. For the entirely
hydrostatic stress states (s, s, s), Rs¼71 depends upon whether s
is greater or less than zero [35,36]. The soft coefficient Rα
represents the ‘soft’ and ‘hard’ stress states. Larger Rα values

Fig. 2. The bilinear cohesive zone model [23].
Fig. 1. The simulation model of MMC.
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