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Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
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a b s t r a c t

This paper deals with a novel formulation of continuous-time model-predictive control for nonlinear

systems. A nonlinear-mapping approximation, employing a PWL approximation, is also an integral part

of the control scheme, and thus removes the need for output-function invertibility. The analytical

formulation of the control law makes it possible to use the method in practice, especially in the

chemical industry. An illustrative experiment is conducted to compare the proposed approach with the

method of nonlinear H1 control of a pH-neutralization process.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Linear-model predictive control (LMPC) is a well-known
and well-established industry standard. The generic term
LMPC refers to a class of control algorithms in which a linear
dynamic process model is used to predict and optimize process
performance. Having its roots in the 1970s, LMPC is nowadays
commercially available primarily for controlling constrained
multivariable processes (Henson, 1998). However, many pro-
cesses are sufficiently nonlinear to render the successful applica-
tion of LMPC impossible. There are two main cases where a
nonlinear type of control has to be considered: a moderately
nonlinear process with large operating regimes (e.g., multi-grade
polymer reactors) and a highly nonlinear process that operates
near a fixed operating point (high-purity distillation columns).
The need for high-quality control of such processes led to the
development of the nonlinear-model predictive control (NMPC)
methods. In general, NMPC (and also LMPC) is an optimization-
based control strategy where a sequence of control moves is
computed to minimize an objective function that includes
predicted future values of the controlled outputs. The predictions
in each computation step are obtained from a nonlinear
process model. The majority of methods rely on the so-called
nonlinear receding horizon principle (Mayne and Michalska, 1990;
Henson, 1998), where feedback is included by implementing

only the manipulated inputs computed for the present time
step, then moving the prediction horizon forward one step and
repeating the procedure with the new measurements. This
strategy yields an open-loop optimal controller. There is a wide
variety of existing NMPC methods, for example in Maner et al.
(1996), Badgwell (1997) and Norquay et al. (1999) in the discrete-
time framework, and in Demircio

˘
glu and Gawthrop (1991),

Chen et al. (2003) and Magni and Scattolini (2004) in the
continuous-time framework. For the state of the art of NMPC
methods the reader is referred to the papers by Morari and Lee
(1999) and Henson (1998). Issues like the stability and optimality
of the NMPC methods were discussed in detail by Mayne et al.
(2000).

NMPC requires the availability of a suitable nonlinear dynamic
model of the process, and the accuracy of the model is of
paramount importance. There are two general classes of nonlinear
models used: fundamental models, based on transient mass,
energy, and momentum balances, and empirical models, such as
Hammerstein, Wiener, Volterra, and fuzzy models, which are
derived on the basis of empirical data from the process. The
majority of NMPC methods are derived in discrete time, and
therefore need discrete-time models. On the other hand, the
majority of models are given in continuous form and need to be
discretized. The drawbacks of discretizing nonlinear continuous-
time models were discussed by Pearson (2003); and they include
structural changes, the dependence of the stability on the model’s
parameters and the initial states, and the inaccurate system
intersample behavior (Magni and Scattolini, 2004). Because of this
our proposed method is based on a continuous-time model of a
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Chemical Engineering Science 65 (2010) 1720–1728

www.elsevier.com/ces
dx.doi.org/10.1016/j.ces.2009.11.008
mailto:igor.skrjanc@fe.uni-lj.si
mailto:igor.skrjanc@fe.uni-lj.si


ARTICLE IN PRESS

process, and the model can be obtained either directly from a
first-principle nonlinear process model or by identification.

The proposed approach in this paper tackles the control of
nonlinear processes using continuous-time nonlinear model-
based predictive control. The advantage of the proposed approach
is in the continuous-time framework which is used here. This
means that the sampling time, when applying the algorithm on
digital hardware and the digital redesign is made, can be selected
after the analogue control system is designed and, thus the
continuous-time closed-loop bandwidth is known. The approach
in continuous-time enables also a multi-sampling-rate digital
implementation.

Special attention is given to the processes that can be
efficiently modelled using a Wiener-type model. The linear
dynamics are derived from the first-principle nonlinear model;
and the nonlinear output function is calculated from the steady-
state equations and approximated by piecewise-linear (PWL)
functions. The model-output prediction is calculated using a
Taylor-series expansion of the Wiener model. The Wiener-PWL
structure makes it possible to form the prediction in an exact
analytical form consisting of a constant linear, and a variable
nonlinear, part. The former is a constant matrix that can be
calculated off-line, and the latter is a scalar product representing
the gradient of the PWL-approximation of the nonlinearity in the
Wiener model. The receding-horizon strategy was combined with
a cost function that minimizes the difference between the future-
output-prediction error and the model-prediction error. Conse-
quently, this brings the following benefits to the control-law
calculation:

� The law is derived in a closed analytical form, which resolves
the issue of nonlinear optimization and achieving the global
optimum in each calculation step.
� The reduction of the calculation of the control signal to a scalar

product and an inverse of a scalar (everything else can
be calculated offline) brings a significant reduction in the
computational complexity. This makes it possible to consider
the proposed method for practical applications.
� The nonlinearity is inherently included in the law; compared

to the method in Norquay et al. (1999); this removes the need
to invert the NL approximation.

The outline of the paper is as follows. In Section 2 the PWL
functions are introduced and the model-output prediction is
formulated in the continuous-time domain. In Section 3
the nonlinear predictive control law is derived, and some
stability issues are also discussed. Section 4 presents the
pH-neutralization process and gives a comparison of the closed-
loop-control results for the proposed approach and a nonlinear
H1 approach. Section 5 concludes the paper with some directions
for future work.

2. Problem statement

Let us assume a nonlinear continuous-time system

_xpðtÞ ¼ f ðxpðtÞ;uðtÞÞ;

ypðtÞ ¼ gðxpðtÞÞ;

ypð0Þ ¼ yp0; ypðTÞ ¼ ypT ; ð1Þ

where f : Rn-Rn and g : Rn-R are smooth functions, xpARn is a
vector of n state variables, uAR is a process input and ypAR is
a process output. An optimal control can in general be seen as

the solution of

min
uAO

Jðxp; yp; tÞ ¼min
uAO

Z T

0
Fðxp; yp; tÞdt; ð2Þ

where FARþ is a cost function that satisfies the optimality
criteria, and O is the set of admissible control signals. In other
words, we have to design a controller that asymptotically
stabilizes a closed-loop system in such a way that the process
output, ypðtÞ, optimally follows the prescribed reference trajec-
tory, yrðtÞ, according to the given performance index J. However,
dealing with nonlinear continuous-time systems, the problem
setup in (2) leads to solving the Hamilton–Jacobi–Bellman partial
differential equations (Bertsekas, 1995). The solution of the HJB
PDE system is usually obtained numerically (Chen et al., 2003),
which is computationally too expensive to be considered for
practical control applications. As an alternative, in this paper we
avoid solving the system of PDE by using the moving-horizon
control concept (Mayne and Michalska, 1990; Clarke et al., 1987;
Chen et al., 2003). The idea is to calculate the optimal control
sequence in each time instant by minimizing the given perfor-
mance index, which involves open-loop prediction of the model
output and the predicted reference signal. The initial conditions
are the reference, the model output and the process measured
output at the given time instant t, and the closed-form analytical
solution is open-loop optimal. After applying the calculated input
signal uðtÞ, the time-frame is moved to the next time instant.

2.1. Dealing with a nonlinearity in a system by using the Wiener

model and a PWL approximation

The system’s nonlinearity presents an additional difficulty in
terms of system modelling and control. This problem can be
successfully solved by using a Wiener-type system that has a
special structure that facilitates its application to model-based
predictive control. The Wiener system has the structure of a
dynamic linear block followed by a static nonlinearity

_xðtÞ ¼ AxðtÞþBuðtÞ;

vðtÞ ¼ CxðtÞ;

yðtÞ ¼ hðvðtÞÞ; ð3Þ

where AARn
�Rn, BARn, and CARn are the state-space matrices,

h : R-R denotes the static nonlinear mapping and yAR is the
process-model output. The variable vðtÞAR represents the
intermediate variable that does not necessarily have a clear
physical meaning. Notice also that the functions h from (3) and g

from (1) are not necessarily equal because, in general, the static
nonlinearity in the model also covers the effects of the
nonlinearity in the states of the process. Different approaches to
Wiener-model identification are found in the literature. The most
frequently used is the nonlinear–linear (N–L) approach, which is
the most comprehensible and ensures an accurate description of
the static nonlinearity (Gerkšič et al., 2000). This approach
requires steady-state data. The excitation signal has to be
designed to obtain the information about the steady-state
behavior of the system. The steady-state curve of the observed
system is obtained from data pairs of the input variable u and the
corresponding output variable y during steady-state, ðusi; ysiÞ. The
data set of steady-state points is a non-equidistant set of data and
it is spread around the nominal static curve. This set of steady-
state points is now modelled using PWL approach.

Using the PWL approximation, the process-model output is
defined as

yðtÞ ¼ ĥðvðtÞÞ ¼YTLðvðtÞÞ; ð4Þ
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