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a b s t r a c t

Effects of Zn atoms on basal dislocation in Mg solution have been studied by means of the improved 2D
Peierls–Nabarro model in combination with misfit approximation under the Fermi–Dirac distribution
function of solute atoms. With increasing Zn concentration, the separation distance for edge dislocation
is decreased, while the separation distance is increased for screw dislocation. From function of the total
dislocation line energy surfaces as shift displacement of dislocation center and separation distance
between the partials, it is found that with the increase of solute concentration of Zn atoms, the Peierls
energies, Peierls stresses and yield stresses for edge dislocation increase more quickly than ones for
screw dislocation, and the increase of edge dislocation is stronger.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Magnesium and its alloys have attracted increasing interest in
automobile and aerospace industry due to the light weight, high
specific strength and environment-friendliness [1,2]. However, the
strength and ductility of pure Mg are poor due to the anisotropic
response of its hexagonal close-packed (hcp) structure. It has been
shown that small addition of solute atoms causes a significant
increase in both strength and ductility of Mg due to solid-solution
strengthening [3–7]. Therefore, the study of solute strengthening
in Mg solution is valuable.

Generally, the plastic deformation of Mg is accommodated by
slip of [1120] dislocations on basal and non-basal ((1010)-prismatic
and (1011)-pyramidal) planes, [1123] dislocations on pyramidal
plane (1122) and twinning on (1012) and (1011) planes [8–15].
Because the critical resolved shear stresses (CRSSs) of basal slip,
twinning, prismatic slip and pyramidal slip are in ascending order
[14,16–19], the basal slips are initially activated at finite tempera-
tures during the deformation processing [14,19–21]. Therefore, the
solute strengthening on basal plane would be essential to under-
stand the improvement of strength of Mg solutions.

Recently, theoretical investigation of solute strengthening on
basal plane in Mg solution has been performed using either direct

ab initio calculation or atomistic simulation, in which random
distribution (or average distribution) of solute atoms in alloys was
assumed [22,23]. However, the solute atoms in materials are under
a certain concentration distribution around the dislocation at finite
temperatures due to interaction between solute atom and disloca-
tion [24–26]. Therefore, their model can be further improved for
the study of solute strengthening at finite temperatures, and
further study of solute strengthening in Mg solution is necessary.

Zinc is widely used as a strengthening element in Mg solution
owing to its excellent effect and non-toxicity [27–30]. In this work,
the effects of Zn on basal dislocation of magnesium solution up to
concentration limitation [31] at 300 K have been investigated
using the combination of the improved 2D Peierls–Nabarro model
with misfit approximation under the solute distribution of the
Fermi–Dirac function.

2. Theoretical model and computational method

2.1. The improved 2D Peierls–Nabarro model

In the generalized 2D Peierls–Nabarro model [32–34], the total
line energy of dislocation ET consists of the elastic energy Eel in the
two half-spaces and the atomic misfit energy EA in the glide plane,
that is, ET¼Eel+EA. This total line energy ET is a functional of
disregistry u(η), which satisfies the boundary condition u(−∞)¼0
and u(∞)¼b, where η is the coordinate in the glide plane normal to
the dislocation line ξ.
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The elastic energy Eel in the two half-spaces is expressed with
Stroh tensor Ĥ¼[Hij] [35,36], which depends on the orientation of
the dislocation line. For the (0001) plane of Mg, isotropy Ĥ is
diagonal and has components [H11,H22,H33]¼1/4π[Kedge,Kscrew,Kedge].
Kscrew and Kedge of hexagonal crystals can be calculated by the
following formula [37]:

Kscrew ¼ 1
2
c44ðc11−c12Þ

� �1=2
ð1Þ

Kedge ¼ ðc11 þ c13Þ
c44ðc11−c13Þ

c33ðc11 þ c13 þ 2c44Þ

� �1=2
ð2Þ

where c11 ¼ ðc11c33Þ1=2 and c11, c12, c13, c33, and c44 are elastic
constants. For the sake of convenience of following minimizing of
the total line energy of dislocation ET, the elastic energy Eel is then
given by [32]
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with i, j being integers and q¼[e,s]. uq
i;j; ω
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i;j are respectively

disregistries, half widths and positions of the partials and R
represents the normal outer cutoff radius of the elastic solution
[38,39].

For a continuous displacement distribution, the atomic misfit
energy EA can be calculated by integrating the misfit energy
density along the displacement path:

EAðuÞ ¼
Z þ∞

−∞
γðuðηÞÞdη ð4Þ

The misfit energy density along the specific path can be
obtained by the generalized stacking fault (GSF) surface
γ(u(η))¼γ(ux(η),uy(η)). For the following minimization of the total
line energy of dislocation, the γ surface is expanded in 2D Fourier
series in reciprocal lattice vectors [33]:

γ½ux;uy� ¼ c1 þ c2½ cos ð2puxÞ þ cos ðpux þ quyÞ
þ cos ðpux−quyÞ� þ c3½ cos ð2quyÞ
þ cos ð3pux þ quyÞ þ cos ð3pux−quyÞ�
þc4½ sin ð2puxÞ− sin ðpux þ quyÞ− sin ðpux−quyÞ� ð5Þ

where the reciprocal lattice vector along x direction is
p¼ 2π=ð

ffiffiffi
3

p
aÞ and q¼2π/a is along y direction, a¼3.2 Å is the

lattice constant of Mg and c1, c2, c3 and c4 are coefficients.
In solution, the configurations and properties of dislocations

are very complicated due to the interaction between solute atoms
and dislocations, so the calculation of total dislocation energies
thus is very difficult and time-consuming. Currently, misfit appro-
ximation of the solute strengthening model is proposed and
applied to the study of dislocation in Mg solution [22]. In this
approximate model, the misfit energy can be expressed as

E′AðuÞ ¼ EAðuÞ þ∑
n
c0En�bindingðuÞ ð6Þ

The first term is the misfit energy EA of pure solid and the
second term is the total interaction energy between solute atoms
and dislocation, in which n represents the n-th atomic row parallel
to the dislocation line, c0 is the average concentration of solute
atoms, and En-binding(u) is the interaction energy of solute atoms
with dislocations at n-th atomic row, which can be calculated in
terms of the following chemical interaction and size interaction
[22]:

En�bindingðuÞ ¼ En�chemicalðuÞ þ En�sizeðuÞ
¼ En�chemicalðuÞ−3BV0⋅eVnðuÞ⋅εb ð7Þ
The first term is the chemical interaction energy of single solute

Zn atom with GSF, which is defined as follows:

EchemicalðuÞ ¼ A½γsolutionðuÞ−γpure MgðuÞ� ð8Þ
where A is the area of the fault plane. In Eq. (7) above, the second
term is the size interaction energy, where B is the bulk modulus of
Mg, V0 is the equilibrium volume of a cell, eVn is the local
volumetric strain at n-th atomic row and εb is the size misfit,
which can be calculated as εb ¼ −ðE′=3BV0Þ, where E′ is the slope of
the fitted quadratic strain energy of Mg solution. The local
volumetric strain is defined as eVn¼Vn/V0−1, which can be repre-
sented by the disregistry u. No local volumetric strain exists in the
screw components of the partial, for the edge components, from
the configuration as shown Fig. 1, the following expressions can be
easily obtained based on the theory of straight dislocation [25,40]:

ben�up−b
e
n�down ¼ ue

nþ1−u
e
n ð9aÞ

ben�up þ ben�down ¼ 2be ð9bÞ

Then the local volumetric strain at n-th atomic row in the final
relaxed dislocation geometry can be obtained as

eVn�up ¼
ben�up þ beðn−1Þ�up−2b

e
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e
n−1
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ð10aÞ
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In the above approximate model of Eq. (6), the concentration c0
in the misfit energy is assumed to be uniform. In fact, due to the
interaction between solutes and dislocation, the solute should
have certain distribution. The distribution of solute atoms at the n-
th atomic row parallel to the dislocation line on the glide plane can
be expressed using the Fermi–Dirac function [25]:

cn ¼
1

1þ expf½−En�bindingðuÞ−kT lnðc0=ð1−c0ÞÞ�=kTg
ð11Þ

where c0 is the average concentration of solute atoms Zn in the Mg
solid solution, and T¼300 K has been used at present. Then the
total line energy of dislocation at finite temperatures can be
expressed as

ET ðuÞ ¼ EelðuÞ þ EAðuÞ þ∑
n
cnEn�bindingðuÞ ð12Þ

By minimizing dislocation line energy of the above 2D PN
model, the effects of Zn on basal dislocations of Mg solution can be
studied. The full details of minimizing procedure are described
elsewhere [32,38,41].

2.2. Calculation method

The density functional theory (DFT) calculations were performed
using VASP [42] with Perdew Wang (PW91) version of generalized
gradient approximation (GGA) [43] and projector-augmented wave
(PAW) [44] potentials. All calculations were performed at 0 K and
the cutoff energy of plane wave basis was 350 eV. Brillouin zone
sampling was performed using Gamma centered Monkhorst–Pack

Fig. 1. Illustration of local volumetric strain for the edge component from the
straight dislocation model. The faded spheres represent the perfect lattices.
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