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a b s t r a c t

The age-hardening curves of micro-hardness measurements obtained for sheets of Al–3 wt%Mg alloy

under different temperatures, applied loads and dwell times showed leveling and pronounced

oscillations, indicating instability and reflecting a competition between the effect of dynamic recovery

or sub-structure coarsening and the effect of solute drag and precipitation hardening. An artificial

neural network (ANN) and the Rprop training algorithm were used to model the nonlinear relationship

between the parameters of the aging process and the corresponding micro-hardness measurements.

The predicted values of the ANN are in accordance with the experimental data. A basic repository on

the domain knowledge of the age-hardening process verified the expected effect of micro-hardness

decrease by increasing any of the applied parameters.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Weight reduction, reducing fuel consumption and improving
fuel efficiency have become a key focus area because of the
demand for light-weight alloys for structural applications [1]. In
this respect, Aluminum (Al) alloys, of which alloys with Magne-
sium (Mg) as the major alloying element, have been considered
for use in a wide variety of applications [2]. Wrought as non-heat
treatable alloys, their strength is derived mainly from solid
solution strengthening by Mg, which has a substantial solid
solubility in Al, and strain hardening [3].

Micro-hardness testing, as a complex property related to the
strength of inter-atomic forces, can be the easiest way to
determine the mechanical properties of the different phases of
the structure and follow aging behavior during the phase decom-
position sequence [4] even at high temperatures [5]. It is there-
fore important and indispensable to simulate the aging processes
by numerical methods in order to control and predict the proper-
ties of the Al–Mg alloy.

Artificial neural network as a kind of data mining and artificial
intelligence technique is a massively parallel-distributed processor

that has a neural propensity for storing experimental knowledge,
making it available for future use [6]. Unlike conventional, expli-
citly programmed computer programs, neural networks are trained
through the use of previous example data and then the weights of
the neurons are iteratively adjusted until the output for a specific
network is close to the desired one. Furthermore, neural networks
possess many excellent properties such as outstanding non-linear
approximation, auto-adaptation and association capability. As a
complex non-linear system, NN models have been widely
employed to map the indeterminate relationship between cause
and effect variables. [7–12].

During solution treatment and aging process the hardness, Hv,
of Al–3 wt%Mg alloy depends on three independent aging para-
meters; temperature (T), time (t) and load (L); which represent
the input layer. Hence, the output layer in the present network
consists of one neuron representing hardness, Hv.

This paper uses an ANN program and back propagation algo-
rithm (Rprop) to model the nonlinear relationship between hardness
and temperature. The following sections provide an experimental
procedure, brief introduction to ANN, describe the selected ANN
structure, provide training data and discuss the results.

2. Experimental procedure

An Aluminum–Magnesium alloy containing 3 wt%Mg (Al–3
wt%Mg) was prepared from elements of 99.9% purity (Al and
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Mg). Aluminum was melted in a graphite crucible placed in the
stable zone of a muffle furnace adjusted at 1123 K. Mg was added
to the Al until it completely melted. Finally, the casting was carried
out in hot iron molds. The melt was cooled in iced water. The ingot
was given an initial annealing for 8 h, at 773 K, and then quenched
in cold water. The ingot was rolled with intermediate annealing at
773 K to obtain sheets of 7 cm length, 3 cm width and 0.1 cm
thickness. The micro-hardness measurements were obtained by
using a Leco micro-hardness tester (LM700). The tested sheets
were heated for 2 h in the working temperature range from 443 K
to 503 K in steps of 10 K, then quenched in cold water kept at room
temperature (RT). The surface of any tested sample was polished
using a polishing machine (KNUTH-ROTOR 2 STRUERS), and then
examined by an optical microscope having magnifications of 20�
and 50� . Hardness indentation was obtained by applying the
loads 10, 50, 100 and 300 g for the dwell times 10, 20, 30 and 40 s.
The end button was pressed to show the mean diagonal value and
the corresponding hardness value.

3. Artificial neural network

Neural networks are basically a connective system [13–19] in
which various nodes, called neurons, are interconnected. A typical
neuron receives one or more input signals and provides an output
signal depending on the processing function of the neuron. The
most popular neural networks are feed forward networks. During
the training process, the network adjusts its weights to minimize
the error between the predicted and actual outputs. The most
common algorithm for adjusting the weights is the back propaga-
tion algorithm. In the forward pass, the input signals propagate
from the network input to the output. In the reverse pass, the
calculated error signals propagate backwards through the net-
work, where they are used to adjust the weights. Any efficient
optimization method can be used for minimizing the error
through weight adjustment. An example of a neuron with a
sigmoidal transfer function is shown in Fig. 1. This simple
processing unit is known as an elementary perceptron.

3.1. Improvement on BP training algorithms

Training of the neural network was done in matlab, using the
trainrp function. Trainrp is a network training function that
updates weights and bias values according to the resilient back-
propagation algorithm (Rprop). The Rprop algorithm proposed by
Riedmiller and Braun is one of the best performing first-order
learning methods for neural networks. In the Rprop learning
algorithm, the direction of each weight update is based on the
sign of the partial derivative @E=@wij (let wij denote the weight in a
neural network from neuron j to neuron i, and E an arbitrary error
measure that is differentiable with respect to the weights).
A step-size, i.e., the update amount of a weight, is adapted for
each weight individually. The main difference to other techniques
is that the step-sizes are independent of the absolute value of the
partial derivative. The benefits of this update scheme are
described in Ref. [20], one iteration of the original Rprop algo-
rithm can be divided into two parts. The first part, the adjustment

of the step-sizes, is basically the same for all algorithms employed
in this study. For each weight, wij, an individual step-size, Dij, is
adjusted using the following rule:
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where 0oZ�o1oZþ . If the partial derivative qE/qwij possesses
the same sign for consecutive steps, the step-size is increased,
whereas if it changes sign, the step-size is decreased (the same
principle is also used in other learning methods, e.g., in Refs.
[21,22]). The step-sizes are bounded by the parameters Dmin and
Dmax. The second part of the algorithm is the update of weights.

3.2. Modeling the hardness using ANN

The proposed ANN model of hardness can be viewed as a two
inputs–one output model. The inputs are temperature and loads
(10, 50, 100 and 300 g) at different times (10, 20, 30 and 40 s)
while the output is hardness Hv. As the nature of the inputs
(different times) is completely different from each other, authors
choose to internally model the problem with four individual
neural networks trained separately using experimental data.

The first ANN was configured to have temperature and
time(10 s) as inputs at different loads (10, 50 and 300 g). The output
is the hardness (see Fig. 2). Using this input–output arrangement,
different network configurations were tried to achieve good mean
sum square errors (MSSE) and good performance for the network.
The four-layer configuration shown in Fig. 3 is chosen. These layers
are: three hidden layers of 80, 90 and 60 neurons respectively, and
the output layer consisting of one neuron. The transfer functions
were chosen to be a logsig function for the first hidden layer and
poslin for the second and third hidden layers, while the output layer
was chosen to be the linear pureline function.

The second ANN (at t¼20 s) with three hidden layers of 70, 60
and 60 neurons respectively, the third ANN (at t¼30 s) with three
hidden layers of 80, 70 and 67 neurons respectively, and the
fourth ANN (at t¼40 s), three hidden layers of 50, 60 and 70
neurons respectively, were found to give the minimum mean
square errors and exact modeling.

Fig. 1. Neuron with a sigmoidal transfer function.

Fig. 2. Block diagram of the first ANN based modeling.
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