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of particles, starting with particles of both uniform and non-uniform compositions. The straight forward
extensions of 1-d techniques preserve 2" properties of non-pivot particles, which are taken to be number,

Ilf?;,‘zﬁggn balance modelling two masses, and product of masses for the solution of 2-d PBEs. Chakraborty and Kumar [2007. A new
Discretization methods framework for solution of multidimensional population balance equations. Chemical Engineering Science
Multi-dimensional population balance equations 62, 4112-4125] have recently proposed a new framework of minimal internal consistency of discretiza-
Modelling and simulation tion which requires preservation of only (n + 1) properties. In this work, we combine a new radial grid

[proposed in 2008. part I, Chemical Engineering Science 63, 2198] with the above framework to solve 2-d
PBEs consisting of terms representing breakup of particles. Numerical dispersion with the use of straight
forward extensions arises on account of formation of daughter particles of compositions different from
that of the parent particles. The proposed technique eliminates numerical dispersion completely with a
radial distribution of grid points and preservation of only three properties: number and two masses. The
same features also enable it to correctly capture mixing brought about by aggregation of particles. The
proposed technique thus emerges as a powerful and flexible technique, naturally suited to simulate PBE
based models incorporating simultaneous breakup and aggregation of particles.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction occur simultaneously. A general PBE in n-d space for simultaneously

and independently occurring processes of breakup and aggregation

Population balance equations (PBEs), first proposed by Hulburt of particles is given by

and Katz (1964), Randolph (1964), and Fredrickson et al. (1967), find

applications in both physical and biological processes. Particulate on(v, t) _ 1 / / QW' V', " b

systems in which particles continuously change their identity can ot 2 ’ ’ ’

be described by PBEs with internal state of particle as continuous x POV + v vy dv’ dv”

variable. Crystallizers, liquid—liquid and gas-liquid contactors, fer- oo , ,

menters, fluidized beds, polymer reactors, etc. (Ramkrishna, 2000) - fo Q' vin(v, Hn(v', ) dv

are few of the process equipment which have been simulated us- , L ,

ing PBEs. In a number of industrial processes (granulation for exam- + f PO NOHTWHNW', AV — T(V)n(v, b) (1)
ple), particles need to be identified with more then one independent

(internal) variable. In general, if n internal variables are required to ~ Where v is a vector of n internal attributes of particles, n(v, t) dv
identify a particle uniquely, the population balance equations re-  is number of particles in range v to v + dv, Q(v, V') is aggregation
quired to characterize such processes become n-dimensional in na-  frequency, I'(v) is breakage frequency, (v, v') dv is average number

ture. In many such processes, breakup and aggregation of particles of particles formed in range v to v + dv when a particle of state v/
breaks, and P(v’,v”|v) is the probability of formation of a particle

with attribute v when two particles with attributes v’ and v” ag-
gregate. When a particle can be adequately identified for its role in
* Corresponding author. Tel.: +918022933110; fax: +918023608121. a process system by just one internal variable, for example its size,
E-mail address: sanjeev@chemeng.iisc.ernet.in (S. Kumar). the above general equation leads to 1-d PBE, and vector v reduces to
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Fig. 1. Representation of a non-pivot particle of size v through neighbouring fixed
pivots: (a) in 1-d (Kumar and Ramkrishna, 1996a), (b) extension of Kumar and
Ramkrishna (1996a) to 2-d (preservation of 2" properties), (c) framework of minimal
internal consistency (Chakraborty and Kumar, 2007) applied to 2-d (preservation of
n+ 1 properties).

a scalar. Vector v for 2-d PBEs can simply consist of masses of two
constituents of particles.

Analytical solutions of the above equation for number density
are available for simple cases: pure aggregation (Scott, 1968) and
pure breakup (Ziff and McGrady, 1986, 1987; Ziff, 1991) of particles
identified by one internal coordinate. Analytical solution for simul-
taneous breakup and aggregation is limited to a special combina-
tion of breakup and aggregation kernels (Blatz and Tobolsky, 1945).
Analytical solutions for multi-variate number density are available
for a few cases (Gelbard and Seinfeld, 1978). Most often, numer-
ical solutions are required. Several numerical approaches to solve
PBEs are available, e.g., method of weighted residuals (Subramanian
and Ramkrishna, 1971), finite difference method (Mantzaris et al.,
2001), method of moments (McGraw, 1997). These techniques are re-
viewed by Ramkrishna (2000). Among the discretization techniques,
the fixed pivot technique (FPT) of Kumar and Ramkrishna (1996a) is
quite useful for the solution of 1-d PBEs due to its simplicity and ro-
bustness (Vanni, 2000; Attarakih et al., 2004; Roussosa et al., 2006).
In this technique, continuous particle population is discretized into
bins, and represented through representative volumes called pivots,
one for each bin. The non-pivot particles formed through breakup
and/or aggregation of particles located on pivots are represented
through pivots adjoining non-pivot particles as shown in Fig. 1(a).
Discretized version of Eq. (1) is obtained in terms of particle popu-
lations at discrete pivots.

Direct extensions of 1-d discretization techniques to 2-d PBEs,
using rectangular grids (Fig. 1(b)), are reported by Kumar and
Ramkrishna (1995) and Alexopoulos and Kiparissides (2007) for si-

multaneous breakup and aggregation, and Vale and McKenna (2005)
and Kumar et al. (2007) for pure aggregation. In its generalized
form, this approach uses line segments as bins for 1-d, rectangles
for 2-d, cuboids for 3-d, hyper-cuboids with 16 vertices (pivots) for
4-d PBEs, and so on. A non-pivot particle is represented through 2"
neighbouring pivots, and requires preservation of 2™ of its prop-
erties to determine fractions assigned to the neighbouring pivots.
These properties are: x0 and x! for 1-d; x0y0, x1y0, xOy1, and x1y!
for 2-d; x0y020, x1y020 x0y170 x0y071 x1y170 503171 41y071 and
x1y1z1 for 3-d; sixteen properties for 4-d PBEs; and so on.

A new framework of minimal internal consistency, proposed by
Chakraborty and Kumar (2007), preserves only n + 1 properties of a
non-pivot particle and represents it through n + 1 adjoining pivots.
This has proved to be an effective extension of the original fixed pivot
technique. The bins required for discretization in this framework are
line segments, triangles, tetrahedrons, an object with five vertices
in 4-d space, and so on to solve 1, 2, 3, and 4-d PBEs respectively.
Incidently, these objects are also known as natural objects which
enclose a region of n-d space with minimum number of vertices. The
authors have demonstrated the usefulness of their framework by
solving 2 and 3-d PBEs for pure aggregation using randomly oriented
triangles (Fig. 1(c)) and tetrahedrons, with preservation of number
and n constituent masses of particles (their internal attributes).

Nandanwar and Kumar (2008) proposed a new type of struc-
tured radial grid to harness the advantages of the framework of
Chakraborty and Kumar easily and effectively. In comparison to a
random grid, a regular structured grid can be generated easily and
searched easily to locate a non-pivot particle in space. It also offers
numerous other advantages. Nandanwar and Kumar demonstrated
the effectiveness of their radial grid for the solution of 2-d PBEs for
pure aggregation processes. The present paper is an extension of
our previous work (Nandanwar and Kumar, 2008). Here, we demon-
strate the usefulness of radial grid for discretization of 2-d PBEs for
pure breakup and simultaneous breakup and aggregation of parti-
cles. The results obtained suggest that the framework of minimal
internal consistency combined with radial grid offers a natural so-
lution methodology to predict evolution of particle population cor-
rectly when particles undergo breakup with or without simultaneous
aggregation.

2. Previously developed discretization methods for PBEs

An equation for time variation of particle population in a bin rep-
resented by a pivot can be obtained by integrating Eq. (1) over the
domain of the bin. As most of the non-pivot particles born into a bin
are of sizes different from that of the pivot that represents it, one can
choose to either preserve their numbers or mass. Batterham et al.
(1981) conserved mass for pure aggregation problems. As the result-
ing discretized equations did not preserve numbers, the variation of
total number of particles with time could not be predicted correctly.
Hounslow et al. (1988), who recognized the above problem, were
the first to propose a discretization technique which preserved num-
ber of particles formed and also conserved mass of particles. Instead
of choosing particles in a bin to be represented by a pivot, they as-
sumed uniform number density of particles in a bin. They preserved
numbers in their derivation of discretized equations, multiplied the
terms accounting for birth of particles with an unknown parame-
ter, and estimated its value to enforce mass conservation. Their fi-
nal equations were derived for a fixed geometric grid—the ratio of
the largest to the smallest particle in a bin being two. Litster et al.
(1995) expanded the scope of the technique of Hounslow et al. by
deriving discretized equations for geometricc grids with the ratio of
the largest to the smallest particle being 21/9, where q is an integer.
These approaches appear to be closely tied to the grids they use.
Extension of these approaches to include breakup processes is not
possible (Vanni, 2000).
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