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This paper focuses on non-isothermal plug flow reactors with fast and slow reactions. These processes are
modeled by first order hyperbolic partial differential equations with large and small parameters, which
results in stiffness and multi-scale behavior. Through a combination of the method of characteristics and
singular perturbation techniques, a model reduction method is developed for obtaining a non-stiff repre-
sentation of the dominant dynamics of these systems. The application of the method and the advantages
of using the reduced models for model-based control are illustrated through a case study.
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1. Introduction

Chemical processes typically involve physical and chemical
phenomena occurring over widespread time and length scales. Such
processes are usually modeled by stiff systems of differential equa-
tions. The numerical solution of such systems is computationally
intensive, especially in the case of PDEs (see e.g., Miranker, 1981;
Verwer, 1996); furthermore, the direct use of such stiff systems
as the basis for controller design is problematic due to the strong
sensitivity of the resulting controllers to measurement and model-
ing errors (Kumar and Daoutidis, 1999). Therefore, there is a need
for methods to derive non-stiff models that capture the essential
dynamical features of such systems and can be used for efficient
numerical simulation and control.

This problem of model reduction (or coarse graining at a broader
level) has attracted a lot of attention in the literature recently (see
e.g., the recent volume of Gorban et al., 2006, for a representative
and broad collection of state of the art results). One direction of
research is motivated by the dissipative nature of certain classes
of distributed systems (e.g., reaction--diffusion or Navier--Stokes
equations) which allows seeking low-order ODE systems that can
adequately approximate the dominant dynamics of the PDE system,
following a variety of analytical or numerical modal decompo-
sition approaches (see e.g., Christofides, 2000; Christofides and
Daoutidis, 1997 and the references therein). However, these tech-
niques do not account for stiffness originating from the source term
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in the underlying PDEs. Another direction concerns the efficient sim-
ulation and systems analysis of macroscopic phenomena based on
model descriptions at a fine microscopic scale (see e.g., Kevrekidis
et al., 2004, and the references therein). There also exists a substan-
tial research body which addresses model stiffness due to chemi-
cal reactions whose rates span widely different orders of magnitude
(see e.g., Maas and Pope, 1992; Lam and Goussis, 1994; Vora and
Daoutidis, 2001; Gorban and Karlin, 2003; Goussis and Valorani, 2006
for representative approaches). Among them, the computational sin-
gular perturbation (CSP) method, originally developed for stiff ODEs,
has been also extended to reaction-diffusion systems (Hadjinicolaou
and Goussis, 1999; Goussis et al., 2005), aiming to address stiffness
due to both the diffusion and the reaction terms.

In this work, we focus on transport-reaction systems where
convective mechanisms dominate over diffusive ones. We focus in
particular on non-isothermal plug flow reactors (PFRs) (a very com-
mon class of chemical reactors) with fast and slow reactions. These
processes are modeled by first order hyperbolic partial differential
equations (PDEs) with large and small parameters, which results in
stiffness and multi-scale behavior. Unlike reaction--convection--
diffusion processes, all the eigenmodes of the spatial differential
operator of these systems contain the same amount of energy,
which precludes the application of modal decomposition tech-
niques (Christofides and Daoutidis, 1997). Moreover, contrary to the
systems studied in Christofides and Daoutidis (1998), there is no
clear distinction between fast and slow variables. In addition, the
multi-scale behavior occurs both in time and space (i.e., all variables
may present temporal and spatial boundary layers) owing to the
distributed nature of the systems.

For the processes under consideration, first, we outline a dimen-
sionless formulation of the standard material and energy balance
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model. The resulting PDE models are then recast in the geomet-
ric context of the method of characteristics to provide insights on
their multi-scale dynamical behavior, and specifically on the occur-
rence of temporal and spatial boundary layers. Then, by using sin-
gular perturbation arguments, we present a systematic framework
to obtain a non-stiff representation of the slow (dominant) dynam-
ics. Various cases are considered to account for fast heat transfer
or fast convection phenomena too. The obtained reduced models
can be used for controller design, by application of control meth-
ods available for hyperbolic PDEs (Sira-Ramirez, 1989; Hanczyc and
Palazoglu, 1995; Christofides and Daoutidis, 1996; Gundepudi and
Friedly, 1998; Orlov and Dochain, 2002; Karafyllis and Daoutidis,
2002; Shang et al., 2004; Smets et al., 2004). As an illustration, we
apply the analysis framework to a representative chemical reaction
system, for which we derive a non-stiff model of the slow dynam-
ics using the proposed method, formulate a control problem and il-
lustrate the advantages of using the non-stiff reduced model as the
basis for controller design.

2. The stiff PDE model

Consider a PFR where the following R reactions involving N
species take place

N∑
j=1

�ijAj = 0 i = 1, . . . , R (1)

where Aj denotes the species j and �ij denotes the stoichiometric
coefficient of the species j in the reaction i. The material and energy
balances describing the evolution of the species compositions and
temperature take the form

�Cj

�t′ = −Ṽ
�Cj

�z′ +
R∑

i=1

�ijRi j = 1, . . . , N

�T

�t′ = −Ṽ
�T

�z′ − 1
�cp

R∑
i=1

�HiRi + UA

�cpVR
(Th − T) (2)

with Cj(t
′ = 0, z′) = fj(z

′) as initial conditions and Cj(t
′, z′ = 0) = gj(t

′)
as feed data for j = 1, . . . , N, where t′ denotes time, z′ denotes the
position with respect to the entrance of the reactor, Cj denotes the
molar concentration of species j, T denotes the temperature, Ṽ is the
axial velocity of the reacting mixture, � the density of the reacting
mixture, cp the mass heat capacity of the mixture, U the heat transfer
coefficient, A the area of heat transfer, VR the volume of the reactor,
Th the temperature of the heat-transfer medium, �Hi is the heat
of reaction (with the usual convention of �Hi <0 for an exothermic
reaction), and Ri is the reaction rate of the reaction i (in moles per
unit of time per unit volume). For simplicity, it is assumed that the
temperature Th is constant and uniform.

In order to analyze such systems in the presence of fast and slow
reactions, we derive a dimensionless form of Eq. (2), in appropriate
normalized variables. We define Ĉ to be the vector of dimensionless
concentrations, Ĉ = [C1/C10 · · · CN/CN0]T where, for simplicity, the
reference concentrations are all taken to be equal to unity (Cj0=C0=1
for j = 1, . . . , N), T̂ to be the dimensionless temperature T̂ = T/T0
(where T0 is the reference temperature), T̂h to be the dimensionless
temperature of the cooling medium T̂h = Th/T0, x to be the vector
of dimensionless concentrations and temperature x = [ĈT T̂ ]T, z to
be the dimensionless axial position z = z′/L (where L denotes the
length of the reactor), and t to be the dimensionless time scaled by
the characteristic time of the reactor t = (Ṽ/L)t′. Since, typically, the
reaction rate Ri is expressed as Ri(x) = ki(T)ri(C), where ki(T) is the
reaction rate constant, we introduce the dimensionless Damköhler
number, defined as the ratio of the characteristic residence time to

the characteristic reaction time

Dai(T, C0) = L

Ṽ

ki(T)ri(C0)

C0

We also introduce the dimensionless Stanton numberwhich captures
the characteristic time of heat transfer compared to the convection
one

St = L

Ṽ

UA

�cpVR

In dimensionless variables, the model in Eq. (2) can be written in
matrix form as
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×
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Da1(T, C0)r̄1(C)

. . .

DaR(T, C0)r̄R(C)

⎤⎥⎥⎦
where

r̄i(C) = ri(C)

ri(C0)
i = 1, . . . , R

It is assumed that, in the temperature range of interest, p fast
reactions have been identified; without loss of generality, we assume
that the last p reactions are fast. More specifically, the Damköhler
number of the (R−p+1)th reaction evaluated at T0 and C0, denoted
Da0R−p+1, is assumed to be a large parameter (much greater than
one) such that the Damköhler numbers Dai(T, C0), for 1� i� (R −
p), are of much smaller order of magnitude than Da0R−p+1, and of

the same order of magnitude as Da1(T0, C0), denoted Da01, and the
Damköhler number of the remaining p reactions are of the same
order of magnitude as Da0R−p+1, i.e.,

Da0R−p+1

Da01
?1

Dai(T, C0)

Da0R−p+1

� O(1) R − p + 1� i�R

Dai(T, C0)

Da01
� O(1) 1� i�R − p (3)

Following this classification of slow and fast reactions, in order
to isolate the source of stiffness to single parameters, we extract the
representative dimensionless numbers Da01, Da

0
R−p+1, and St so that

the system takes the form

�x

�t
= −�x

�z
+ 1

�h
g(x) + 1

�s
Vs(x)rs(x) + 1

�f
Vf (x)rf (x) (4)

where the dimensionless parameters �s, �f , �h characterize, respec-
tively, the slow reactions, the fast reactions, and the heat transfer
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