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a  b  s  t  r  a  c  t

In  this  paper  we  consider  grain  boundary  sliding  as  a dominant  mechanism  of  plasticity  in  nanocrys-
talline  metals.  A  mechanical  model  for  barrier  resistance  to sliding  has been  proposed.  Characteristic
time  of  plastic  relaxation  due  to grain  boundary  sliding  has  been  estimated  based  on  molecular  dynamics
simulation  data.  At quasi-static  deformation  yield  strength  is  determined  by  barrier  resistance,  and  the
predicted  threshold  stresses  are  in  good  agreement  with  experimental  data.

© 2011 Elsevier B.V. All rights reserved.

1. Grain boundary sliding

Many observations of nanocrystalline metals show that they
have equiaxed grain structure [1–3], the same as observed inside
shear bands of ultrafine polycrystals [4] at deformation spots. This
allows to represent the structure of nanocrystalline material as a
close packed lattice of grains. Dislocation plasticity is suppressed in
nanocrystals due to intense interaction between dislocations and
grain boundaries [5].  Thus collective shifts of grains must be a dom-
inant plastic deformation mechanism [2].  It is also confirmed by
molecular dynamics simulations [6,7]. These shifts (or slidings) take
place in planes in the directions of maximal shear stresses �� . There
are two intrinsic forces that resist the sliding of the grains. The first
one is an elastic force from neighbor grains: when a sliding plane
shifts on a grain diameter, every grain deforms two neighbor grains
in adjacent planes. For this shift to happen shear stress must exceed
some threshold value yb, which is necessary to cause corresponding
deformation of neighbor grains; it is the essential condition of acti-
vating the grain boundary sliding. An effective force �eff = �� − yb
acts on sliding grains, and the grains start to move when this effec-
tive force is above zero. The second force acting on moving grain
planes is a frictional force. High angle grain boundaries are most
common in nanocrystalline metals. Structure of these boundaries is
similar to amorphous phase of metals [1,8]. Therefore, the frictional
force corresponds to some viscous deformation in boundaries, as it
occurs in a highly viscous liquid.
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2. Model for the grain sliding

The Maxwell model of highly viscous liquid [9] suggests that
at very short intervals of time material behaves as an amorphous
solid, and at long intervals of time – as an ordinary viscous fluid.
The equation for time derivative of shear stress takes the following
form:

d��
dt

= 2G
dε

dt
− �eff

�
, (1)

where t is the time, ε the macroscopic shear deformation, G the
shear modulus, and � the relaxation time.

In [10] we  combined dislocation dynamics [11] for plasticity
in grains and the Maxwell model (Eq. (1)) for plasticity at the
grain boundaries; high strain rates have been analyzed in [10]. This
approach gave satisfactory description for high strain rate deforma-
tion of copper and for the abnormal Hall–Petch relation observed
in nanomaterials [12,13]. But the key parameter of this model – the
Maxwell relaxation time � – was substituted in [10] as an empiri-
cal parameter. In this paper we develop our previous approach by
proposing a mechanical model for resistance threshold yb of grain
sliding and by estimating of the relaxation time. For the last point
we use equation proposed in [12,14],  which is based on molecular
dynamics simulation data.

From Eq. (1) one can write �eff = 2G�ε̇ for steady conditions
�̇� = 0. Condition yb � �� is commonly satisfied at high strain rate
(108–109 s−1), which is usual in molecular dynamics simulation; it
leads to:

�� � �eff = 2G�ε̇. (2)
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Table 1
Activation parameters for different metals [12,15].

Metal Cu Ni Al

Vs (10−30 m3) 17.4 16 27
Us (eV) 0.246 0.268 0.185
�D(1012 s−1) 6.46 7.19 8.12
�/d,  10−2 s m−1 0.38 0.53 0.04

Condition �̇� = 0 means that the plastic deformation rate is equal to
macroscopic strain rate ε̇ = ε̇P . According to [12,14],  plastic defor-
mation rate in steady conditions can be expressed as

ε̇p = 6b�D
d

exp
(

− Us
kbT

)
sh

(
��Vs
kbT

)
, (3)

where b is the Burgers vector, �D the Debye frequency, Us and Vs

the activation energy and volume, kb the Boltzmann constant, T the
temperature and d is an average grain size of a material.

Taking inverse function of (3) we have:

�� = kbT

Vs
arcsh

(
ε̇pd

6b�D
exp

(
Us
kbT

))
. (4)

Decomposition of the hyperbolic sine in Taylor series gives us:

��≈ dkbT

6b�DVs
exp

(
Us
kbT

)
ε̇p−kbT6Vs

(
d

6b�D
exp

(
Us
kbT

))3

ε̇3
p + · · ·. (5)

Comparing Eqs. (2) and (5) we conclude that the first term in this
expansion is the coefficient 2G�. Hence, we have the relaxation time
of the grain boundary sliding:

� = dkbT

12Gb�DVs
exp

(
Us
kbT

)
. (6)

This comparison also shows that the Maxwell model (Eq. (1))  is
valid than the second term and the higher terms in Eq. (5) are
less than the first term. For values Us = 0.2 eV (Table 1), T = 300 K,
b = 3 × 10−10 m, ε̇p = 109 s−1, �D = 1013 s−1 and d = 10−8 m we have
that the first term 15 times more than the second.

Molecular dynamics simulations [3,12] show that several pro-
cesses take place at grain boundaries simultaneously: for example,
there are a large number of uncorrelated atomic slip events and free
volume migration. Activation parameters, Us and Vs, must take into
account all of these processes; therefore, they can only be found by
an empirical way. Activation volume can be estimated as Vs ∼ b3.
We take the activation energy of grain boundary sliding Us from [5]
for nickel. It has the same order of magnitude as activation energy
of viscous flow in molten state of the metal [15]. Activation parame-
ters for copper and aluminum have been fitted by comparison with
MD simulation results. Parameters of the model are collected in
Tables 1 and 2.

It follows from the data of Tables 1 and 2 that the relaxation
time � is of the order of 10−9–10−10 s. At the constant strain rate
(ε̇ = const), the following solution of Eq. (1) can be written:

��(t) = yb + 2G�ε̇
(

1 − exp
(

− t
�

))
, (7)

which is valid for the initial condition ��(0) = yb. It means that the
finite rate of shear stress relaxation in grain boundaries is signifi-
cant for strain rates exceeding 105 s−1 (yb/G ∼ 0.01, see further Eq.
(16)), which are typical for molecular dynamics simulations [3,5]
and shock wave experiments. For quasistatic deformations with

Table 2
Predicted barrier stress and shear modulus values for different metals.

Metal Cu Ni Al Fe Pd Au

yG (GPa) 0.6 1.23 0.4 1.2 0.8 0.47
G  (GPa) 42 76 26 78 51 28.5

Fig. 1. The deformation of neighbor grains: slipping grain is situated in the bottom
left corner and it moves to the bottom right corner of the picture, static neighbor
grain is above it. Position of slipping grain at different times is shown by dotted
lines. “Deformation line” crosses all points in which maximal deformation (h) of both
grains is reached.  ̨ is a current angle between the direction to center of slipping
grain and vertical line. For h = 0 contact angle  ̨ =  .

creep strain rates 10−5–10−2 s−1 we  can take into consideration
only the threshold stresses yb.

3. The threshold stress

For a precise definition of the threshold stress yb we should
consider, how a sliding grain deforms its neighbor grains (Fig. 1),
which are assumed to be spherical. The distance between the
“deformation line” (see Fig. 1) and the neighbor grain boundary is
the maximal grain deformation h. Introducing the maximal angle
before deformation   and the actual angle in deformation process

 ̨ between point of contact and downwards direction (see Fig. 1),
one can obtain:

h = ds
2

(
1 − cos  

cos ˛

)
, (8)

where ds is the diameter of the slipping sphere.
For close packed structure   = �/6. According to [9],  the radial

elastic force acting on a deformed sphere is

F = d2
s√
2

(
1 − cos  

cos ˛

)3/2
G

3(1 − �)
, (9)

It is important to mention that in calculation an average grain size
d is used; it includes grain boundary width ı, therefore, ds = d − ı in
(8).  Grain boundary thickness ı is about 1 nm.  When the maximal
values of h (at  ̨ = 0) become comparable with ı, the acting force
tends to zero. Projection of this force on sliding direction is:

Fz = �(˛)
G

1 − �
(d − ı)2, (10)

where

�(˛) = sin ˛

3
√

2

(
1 − cos  

cos ˛

)3/2

. (11)

For close packed structure (  = �/6) maximum �(˛) is reached at
15◦; it corresponds to �max = 2.06 × 10−3. The threshold stress act-
ing on the sliding grains from two neighbor grains is then equal
to

yb = 2Fmax
z

(�/4)d2
. (12)
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