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Multiobjective optimization of an industrial grinding operation under various parameter uncertainties is
carried out in this work. Two sources of uncertainties considered here are related to the (i) parameters
that are used inside a model representing the process under consideration and subjected to experimental
and regression errors and (ii) parameters that express operators' choice for assigning bounds in the
constraints and operators prefer them to be expressed around some value rather than certain crisp value.
Uncertainty propagation of these parameters through nonlinear model equations is reflected in terms of
system constraints and objectives that are treated here using chance constrained fuzzy simulation based
approach. Such problems are treated in literature using the standard two stage stochastic programming
methodology that has a drawback of leading to combinatorial explosion with an increase in the num-
ber of uncertain parameters. This problem is overcome here using a combination of fuzzy and chance
constrained programming approach that tackles the problem by representing and treating the uncertain
parameters in a different manner. Simultaneous maximization of grinding circuit throughput and percent
passing mid size fraction are studied here with upper bound constraints for various performance metrics
for the grinding circuit, e.g. percent passing of fine and coarse size classes, percent solids in the grinding
circuit final outlet stream and circulation load of the grinding circuit. Uncertain parameters considered are
grindability indices of rod mill and ball mill, sharpness indices of primary and secondary cyclones and the
respective upper bounds for the constraints mentioned above. The deterministic multiobjective grinding
optimization model of Mitra and Gopinath [2004. Multiobjective optimization of an industrial grinding
operation using elitist nondominated sorting genetic algorithm. Chem. Eng. Sci. 59, 385–396.] forms the
basis of this work on which various effects of uncertain parameters are shown and analyzed in a Pareto
fashion. Nondominated sorting genetic algorithm, NSGA II, a popular elitist evolutionary multiobjective
optimization approach, is used for this purpose.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Grinding is one of the very important comminution operations
for many chemical, mining, metallurgical and mineral processing in-
dustries. Considering the mineral processing sector as an example,
wet grinding is strategically important because it is one of the most
energy and cost intensive operations in the whole ore beneficiation
process, whereas for operational reasons, it is also equally important
since the particle size distribution generated as a result of grinding
operation is going to play a very crucial role in the following min-
eral separation operations, e.g. flotation circuits. Similarly, grinding
plays a key role in cement manufacturing operation where it is used
twice, before and after the kiln operation, once for preparing the
right mixture for clinker production in lime kiln and the other for
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controlling the blain in the final product, respectively. Thus, mod-
eling, optimization and control of industrial grinding circuits have
been among the key focus areas for continuous improvement of com-
minution process performance by respective process experts as well
as researchers in various engineering sectors (Wei and Craig, 2009).

There has been a considerable progress in modeling, optimiza-
tion and control of industrial grinding circuits (Powell and Morrison,
2007; Wei and Craig, 2009). Grinding circuit under consideration
consists of different kinds of milling operation (e.g. rod mill, ball
mill, etc.), classification units (e.g. hydrocyclones) and sumps, where
modeling the grinding operation is the key. Power based models
presented by Bond (1952, 1961) are among the first few efforts
towards the direction of modeling grinding operation, where a well
documented laboratory test to the standard rod and ball mills is
correlated. The strength of these techniques is that if the design op-
eration is in the same regime as the database, then the predictions
are generally good, otherwise not. These techniques are not very
friendly to be extrapolated to new operating conditions or ore types
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(Powell and Morrison, 2007). A step change to the concept of mod-
eling was introduced with the introduction of population balance
methods (Austin et al., 1984; Herbst and Fuerstenau, 1980; Whiten,
1972; Morrell et al., 1993; Napier-Munn et al., 1996), where primar-
ily three relationships, selection function, breakage function and dis-
charge function, are used to capture the result of grinding inside the
grinding unit. With improvements in computational power, various
computationally expensive techniques e.g. computational fluid dy-
namics (Chakraborti et al., 2008a, 2008b), discrete element method
(Mishra, 1991; Mishra and Rajamani, 1994; Datta and Rajamani,
2002), etc. are also evolved for modeling particle–particle interac-
tion in grinding operation. For many such techniques (computational
fluid dynamics and finite element method), the user specifies a grid
of points, appropriate boundary conditions and set of starting values.
A similar calculation is carried out for all grid points sequentially,
values are updated and the process of simulation is terminated based
on some termination criteria got satisfied. An interesting variation
of this is discrete element method where a particle as a point on
movable grid is set to motion as per its interaction with surround-
ing particles as proposed by Cundall and Strack (1979). Similarly,
modeling the effect of hydrocyclones is also found in the literature
(Lynch and Rao, 1975). In an integrated grinding circuit, where many
of these unit operations are carried out simultaneously, a popula-
tion balance modeling approach can be adopted for simulating the
circuit performance (Herbst and Fuerstenau, 1973; Lynch and Rao,
1975; Herbst et al., 1983; Kinneberg and Herbst, 1984; Rajamani and
Herbst, 1991a, 1991b; Mitra and Gopinath, 2004). These kinds of
models can not only be used as softsensors to predict various circuit
performance indicators as well as stream attributes which are oth-
erwise not measurable, but also be integrated with control and op-
timization modules for carrying out optimization in real time mode.
Based on the progress of studying the control of grinding circuit,
several researchers and practitioners have proposed different sets of
manipulated variables (MVs), control variables (CVs) and objectives
in the last two decades. Variables such as flowrate of water to the
sump, flow rate of water to the mill, flowrate of solids to the mill and
flowrate of slurry from sump are among the few that dominate the
list of MVs practiced globally (Wei and Craig, 2009). Similarly, vari-
ables such as product particle size, slurry level in the sump, sump
discharge slurry density, feed ratio, cyclone feed pressure, cyclone
overflow product density, mill load are the most frequently used
CVs (Wei and Craig, 2009). Different control philosophies adopted
globally for grinding control study are PID control, multi variable
control, expert system based control, fuzzy logic control, where PID
control is in the lead as opposed to model predictive control (MPC)
that dominates other alternatives in the process industries (Wei and
Craig, 2009).

Most of the existing control and optimization work cited above
are based on the assumption that all model parameters of the system
under consideration are crisply known. However, real world situa-
tions are quite different and involve uncertainty at the core of the
problems due to many factors such as lack of accurate representation
of the process models and variation in the process and environmen-
tal data. Optimization under uncertainty, therefore, emerged aim-
ing at developing approaches and methodologies to create reliable
solutions that remain feasible in the presence of parameter uncer-
tainty (Sahinidis, 2004; Floudas, 2005; Floudas and Lin, 2004, 2005).
Beginning with pioneering work of Beale (1955), Bellman (1957),
Bellman and Zadeh (1970), Charnes and Cooper (1959), Dantzig
(1955) and Tintner (1955), there have been different philosophies on
which several methods for optimization under uncertainties can be
categorized: stochastic programming, chance constrained program-
ming and fuzzy mathematical programming (Sahinidis, 2004).

Stochastic programming formulations assume that the proba-
bility distributions governing the uncertain parameters are either

known or can be estimated from the exiting data. Two-stage ap-
proach is the most commonly cited stochastic approach, where the
decision variables are partitioned into two sets: the first stage vari-
ables (“here and now” decisions) are to be decided before the re-
alization of uncertain parameters whereas the second stage vari-
ables (“wait and see” decisions) are chosen as a corrective measure
against any infeasibility arising due to a particular realization of un-
certainty (Diwekar, 2003). The goal is to choose the first stage vari-
ables, in such a way that the sum of the first stage costs and the
expected value of the second stage costs are minimized. This ap-
proach has been profusely experimented in process system engineer-
ing literature (Liu and Sahinidis, 1996; Ahmed and Sahinidis, 1998;
Petkov and Maranas, 1998; Ierapetritou et al., 1994; Ierapetritou and
Pistikopoulos, 1994a, 1994b; Pistikopoulos, 1995; Pistikopoulos and
Ierapetritou, 1995; Clay and Grossmann, 1994; Subrahmanyam et al.,
1994; Shah and Pantelides, 1992; Kim and Diwekar, 2002; Gupta
and Maranas, 2000, 2003). One of the drawbacks of this approach
is an exponential increase in problem size with the increase in the
number of uncertain parameters. Unlike stochastic programming
where decisions have to be feasible for all the outcomes of uncer-
tain parameters, chance constrained programming (Prekopa, 1995;
Birge and Louveaux, 1997; Gill et al., 1981; Kall and Wallace, 1994;
Loeve, 1963; Charnes and Cooper, 1959) requires feasibility of solu-
tions with at least some probability specified on constraints having
uncertain parameters. This is expressed in terms of reliability of the
solution. To make the problem more tractable, this probabilistic for-
mulation of chance constrained programming leads to an equivalent
deterministic formulation that can be solved. The main advantage of
chance constrained programming technique is the emergence of the
relatively small deterministic equivalent problem even in presence
of a large number of uncertain parameters that can be solved quite
easily. Applications of CCP in process system engineering literature
are limited to few applications (Maranas, 1997; Gupta et al., 2000;
Gupta and Maranas, 2003; Li et al., 2008; Mitra et al., 2008).

In fuzzymathematicalprogramming,proliferatedbyZimmermann
(1978, 1991), a mathematical programming model is formulated
that takes into account the decision maker's expectations of a target
range of the objective values and soft constraints based on deci-
sion making in a fuzzy environment. In this approach, the degree
of satisfaction of a constraint is defined in terms of a membership
function of the constraint and a small extent of constraint violation
is allowed. Another approach from the similar class could be han-
dling uncertainty using rough set approaches (Dubois and Prade,
2000; Dey et al., 2009). Indiscernibility and fuzziness are distinct
facets of imperfect knowledge that can be handled by rough and
fuzzy set theories, respectively. Indiscernibility is related to the
granularity of knowledge affecting the definition of universes of dis-
course, whereas fuzziness refers ordering of relations that express
intensity of membership. The advantage of fuzzy approach over the
other two approaches mentioned in the earlier paragraph is that
fuzzy approach neither assumes that the uncertain parameters have
to follow any statistical distribution nor allows the final determin-
istic equivalent formulation of the uncertain model to blow up in
size with increase in number of uncertain parameters. Application
of FMP is widely spread across different applications such as ca-
pacity planning (Liu and Sahinidis, 1997), supply chain planning
(Mitra et al., 2009b), production scheduling (Balasubramanian and
Grossmann, 2003), bio-energy production (Ayoub et al., 2007), etc.
to name a few.

In this paper, we consider the more realistic scenarios of han-
dling uncertainty in model parameters that are otherwise assumed
constant such as grindability indices and sharpness indices in a
nonlinear industrial grinding case study and explore the merits of
fuzzy chance constrained programming towards analyzing their im-
pact on the overall optimization of the grinding system. We further
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