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a  b  s  t  r  a  c  t

A  phase  field  dynamic  model  was  developed  and  used  to  investigate  the  effects  of  dislocations  and  applied
strain  on  the  precipitation  behavior  and  microstructure  evolution  of  model  binary  alloys.  The  simulations
show  that  the  local  microstructure  depends  not  only  on  the  relative  magnitude  of  the  dislocation  stress
and the  stress  induced  by  the  applied  strain,  but  also  on the  composition  and  magnitude  of  the  stress.  Its
also  shown  that  the  applied  strain  makes  the  phase  decomposition  quickly.  The  results  suggest  that  the
microstructure  of  an  alloy  and  its evolution  may  be controlled  by  finding  suitable  combination  between
dislocation,  applied  strain  and  composition,  and  the theoretical  calculations  are  helpful  in  predicting
what  those  combinations  should  be.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Applied stress and dislocation stress affect the morphology
of alloy during the solid-state phase transformation. An applied
stress can introduce an additional lattice mismatch strain when
the elastic constants of the matrix and the precipitates are differ-
ent; it also induces the coupling elastic strain energy during the
structure transformation. The applied stress can also modify the
morphologies of the precipitate particles, e.g. their size, shape, vol-
ume  fraction, orientation with respect to the matrix, and phase
transformation kinetics, thus affecting the mechanical and physical
properties of a material [1–7]. On the other hand, the dislocation
stress field can change the velocity of migrating atoms and the
direction in the diffusion phase transformation, influencing in this
way the local precipitates morphology and the phase transforma-
tion velocity [8–11], which in turn results in a change of the local
microstructure. In addition to the applied stress and dislocation
stress, the coherency elastic stress arising from the crystal lattice
mismatch between the matrix and the precipitates is also impor-
tant, and it affects the solid-state transformation as well [12,13].
For predicting and controlling the properties and morphology of
materials it is thus crucial to understand how the applied stress, dis-
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locations and coherency stress affect the microstructures’ evolution
during a solid-state phase transformation [14–17].

Numerous experimental and theoretical studies have been
devoted to investigate this issue [1–13]. For example, Miyazakr
et al. [3] investigated the morphological changes of �′ particles in
Ni–15 at.%Al alloy single crystals due to annealing at 1023 K under
tensile and compressive loads in a [0 0 l] cube direction. They found
that both rods and plates of �′ are aligned parallel to the tensile
axis [0 0 l] and perpendicular to the compressive axis [0 0 l]. On the
other hand, Fährmann et al. [7] studied the effect of pre-strain and
the development of rafting during aging. They found that the pre-
strain paths modify the initial structure of �/�′ interfaces and that
the local state of stress contributes the driving force for rafting. The-
oretical studies that employed the phase field simulation technique
have been used to investigate the effects of applied stress and dislo-
cation stress on a solid-phase transformation [4–11]. For example,
Li and Chen [4] investigated the shape evolution and splitting pat-
tern of coherent particles under applied stresses. They found that
the elongation direction of the precipitates was influenced by the
applied strain direction, the relative magnitude of the elastic con-
stant of the precipitates and matrix, and the sign of the lattice
mismatch. Gururajan and Abinandanan [5] studied the precipitates
rafting under the uniaxial stress, and their results showed that the
purely elastic stress-driven rafting is possible, the rafting is more
pronounced for the soft precipitates, and the sign of the applied
stress is the same as that of the misfit. Finel et al. [6] analyzed the
microstructure evolution in the presence of a lattice misfit and with
inhomogeneous elastic constants; they found that the external load
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along an axis makes the microstructure anisotropic, and that the
situation qualitatively differs depending on the sign of the applied
stress.

The dislocation effects on the precipitation behavior and mor-
phology have been studied by Hu and Chen [10] with Mura’s [18]
dislocation eigenstrain in Fourier space with periodic boundary
condition. Thus, they found that coherent nucleation may  become
barrierless under the influence of the local elastic field of a dislo-
cation. Li et al. [11] investigated the effects of dislocations on the
Fe–Cr alloy spinodal decomposition using Stroh’s [19,20] disloca-
tion formula, and their results showed that dislocations facilitate
the phase decomposition and that special morphologies appeared
induced by the tilt grain boundary. Finally, He [21] and Chen [22]
studied the spinodal morphology of thin film with periodic dislo-
cations; their results showed that the dislocations change the local
microstructure pattern.

All the studies above have focused on the effect that either
applied stress or dislocations stress introduce in a solid-state
transformation. The combined effect of applied elastic strain and
dislocations on the morphology is not very clearly yet, and that is
an interested question. In this paper, we will study this combined
effect by investigating the precipitation behavior and microstruc-
ture of model binary alloys with dislocations under applied strain.
The effects of the relative magnitude of applied stress and dislo-
cation stress on the local morphology and phase transformation
velocity were also investigated.

2. Methodology

In this section we describe the model that has been used to
investigate how dislocation and applied stress affect the morphol-
ogy of alloy during a solid-state transformation.

2.1. The phase field model

The microstructure evolution of a binary alloy, A–B, during pre-
cipitation can be described by the solute composition c(x, t) at any
point x at time t, and it is governed by the Cahn–Hilliard diffusion
equation [23,24]

∂c

∂t
= ∇ ·

[
M · ∇

(
ıF

ıc

)]
, (1)

where M is the chemical mobility and c is the atom fraction of the
element B. F in the equation above is the total free energy of the
simulated system, and it is given by the expression

F =
∫

V

[
f (c) + 1

2
k(∇c)2 + Eel

]
dV ,  (2)

where f (c) is the local chemical free energy density per unit volume,
1/2k(∇ c)2 represents the concentration gradient energy per unit
volume, and Eel is the elastic energy density per unit volume.

The chemical free energy density per unit volume of A–B for the
regular solution approximation is given by

f (c) = (1 − c)G0
A + cG0

B + ˝c(1 − c) + RT[c ln c + (1 − c) ln(1 − c)]
Vm

,

(3)

where G0
A and G0

B are the standard molar Gibbs free energies of
pure A and B, respectively,  ̋ is the interaction parameter, chosen
as  ̋ = 18 kJ/mol, R is gas constant, T is the absolute temperature,
and Vm denotes the molar volume of the alloy. G0

A = G0
B = 0 was

adopted as the reference energy level for the Gibbs free energy.
The concentration gradient coefficient is expressed as [25,26]

k = 1
Vm

1
6

r0
2˝,  (4)

where r0 is the interatomic distance at stress-free state and changes
with composition by simply obeying Vergard’s law. The mobility M
is assumed to be a constant for simplicity.

The phase field equation results from substituting Eq. (2) into
Eq. (1),  and the final result is given by the expression

∂c

∂t
= M∇2

[
ıf (c)

ıc
− k∇2c + ıEel

ıc

]
. (5)

2.2. Elastic stress

The elastic energy in Eq. (5) includes the energy induced by the
eigenstrain, applied and dislocation strain. To introduce the applied
strain into the total elastic energy, the inhomogeneous elastic mod-
ulus tensor is considered, i.e. the elastic modulus of precipitates
and the matrix are different. The local elastic modulus tensor can
be represented as follows:

Cijkl = C0
ijkl + �Cijkl�c, (6)

where �c  = c − c0, c0 is the average composition at the zero stress
reference, C0

ijkl
= �CP

ijkl
+ (1 − �)CM

ijkl
is the average modulus with

� the volume fraction of the precipitates, and CM
ijkl

and CP
ijkl

are
the elastic modulus tensors of the matrix phase and precipitates,
respectively, �Cijkl = CP

ijkl
− CM

ijkl
.

The elastic strain of the system including the applied strain and
dislocation can be given as

εel
ij = εa

ij + εij − ε0
ij − εd

ij , (7)

where εa
ij

is the applied strain, εij is the internal strain, ε0
ij

is the
eigenstrain caused by the compositional inhomogeneity and is
given by

ε0
ij = ε0ıij�c,  (8)

where ε0 = 1/a(da/dc)  is the composition expansion coefficient of
the lattice parameter and ıij is the Kronecker-delta function. The
dislocation eigenstrain εd

ij
in Eq. (7) for an edge dislocation with

Burgers vector b = (b1, 0, 0) can be expressed as [18]

εd
21 = 1

2
b1ı(x2)H(−x1), (9)

where ı(x2) is Dirac’s delta function and H(− x1) is the Heaviside
step function, they each has the property

ı(x − x0) =
{

0 (x /= x0)
+∞ (x = x0)

, (10)

H(−x1) =
{

1 x1 < 0
0 x1 > 0

.  (11)

The other components of the eigenstrain εd
ij

are zero. In the cal-
culation, the Burgers vector of the dislocation is expressed by the
Gaussian function given in the literature [10].

Then the local elastic stress can be given by Hook’s law,

�el
ij = (C0

ijkl + �Cijkl�c)(εa
ij + εij − ε0

ij − εd
ij). (12)

By using the relationship of displacement ui and internal strain εkl,

εkl = 1
2

{
∂uk

∂xl
+ ∂ul

∂xk

}
, (13)

where ui is used to denote the ith component of the displacement.
The internal strain can be obtained by solving the mechanical equi-
librium equation

∂�el
ij

∂xj
= 0. (14)
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