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a  b  s  t  r  a  c  t

The  extent  of  deformation  induced  martensite  (DIM)  is  controlled  by steel  chemistry,  strain  rate,  stress,
strain, grain  size,  stress  state,  initial  texture  and  temperature  of  deformation.  In  this  research,  a  neural
network  model  within  a Bayesian  framework  has  been  created  using  extensive  published  data  correlating
the extent  of  DIM  with  its influencing  parameters  in a variety  of  austenitic  grade  stainless  steels.  The
Bayesian  method  puts  error bars  on  the  predicted  value  of  the  rate  and  allows  the  significance  of  each
individual  parameter  to  be  estimated.  In addition,  it is  possible  to  estimate  the  isolated  influence  of
particular  variable  such  as  grain  size,  which  cannot  in  practice  be varied  independently.  This  demonstrates
the  ability  of  the  method  to  investigate  the  new  phenomena  in  cases  where  the  information  cannot  be
accessed  experimentally.  The  model  has  been  applied  to  confirm  that  the  predictions  are  reasonable  in
the context  of  metallurgical  principles,  present  experimental  data  and  other  recent  data  published  in the
literatures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Austenitic stainless steels are extensively used in engineer-
ing applications, nuclear power plant components, automobile
and pharmaceutical industries due to their excellent corrosion
resistance, weldability and mechanical properties. Metastable
austenitic stainless steels undergo DIM transformation, where the
� (fcc) austenite is transformed to thermodynamically more stable
˛′ (bcc) martensite due to plastic deformation. This phase trans-
formation enhances the work hardening of these steels, and affects
their ductility [1].

Furthermore, the microstructural evolution and the mechani-
cal behaviour are sensitive to chemical composition, temperature,
stress, strain, strain path, strain rate, stress state, grain size, and
initial crystallographic microtexture. Understanding the influence
of these factors, resulting microstructures and the corresponding
mechanical behaviour are the most important part not only in terms
of the selection of the best material, but also in the optimal develop-
ment of material models, which are nowadays extensively applied
in the automobile and nuclear power plant industries to under-
stand their forming and crash related performances. Considerable
attention was given in the past to the microstructure of austenitic
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stainless steels, the stability of the phases present in these steels
and the effects of amount and distribution of the phases present
on the mechanical behaviour of the material under service. The
mechanical properties of metastable austenitic stainless steels are
strongly influenced by the morphologies and the extent of defor-
mation induced phase transformation.

In the past, there has been a constantly increasing interest for
neural network modelling in different fields of materials science [2].
Several models have been developed for prediction of mechanical
properties, phase transformations, optimizing alloy composition,
processing parameters, heat treatment conditions, on line corro-
sion monitoring, improving weldability, etc. [2].  This empirical
approach becomes more attractive as it is fairly the robust tech-
nique and in most cases, it rapidly converges to a target solution.
This provides a range of powerful new techniques for solving prob-
lems in pattern recognition, data analysis and control.

The purpose of the work presented here is to develop a model,
which makes possible the estimation of DIM content as func-
tion of its influencing variables using neural network technique
within a Bayesian framework [3].  This model would tremendously
help to the nuclear power plant, automobiles and pharmaceuti-
cal industries to design their components under service. In the
present context, the optimization process needs access to a quanti-
tative relationship between the chemical composition of austenitic
stainless steels, grain size, stress, strain, temperature, strain rate
and the ultimate the extent of DIM. A neural network method
has been developed to correlate those and applied extensively for
applications.
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Table 1
Statistics of database used for neural network analysis. SR: strain rate, T: temperature, GS: grain size, TSS: true stress, TSN: true strain, DIM: deformation induced martensite
and  SD: standard deviation. The column marked ‘Example’ is a specific case used to generate Fig. 14.

Inputs Units Maximum Minimum Mean SD Example

C wt%  0.10 0.007 0.05 0.03 0.028
Mn wt%  8.92 0.42 1.761 1.61 1.32
Cr  wt%  18.58 15.40 17.78 0.68 18.13
Ni  wt%  13.53 2.75 8.03 1.59 8.32
Mo  wt%  2.53 0 0.31 0.53 0.15
N  wt%  0.24 0 0.05 0.05 0.044
Cu wt% 0.70 0 0.16 0.15 0.26
Nb wt% 0.11 0 0.006 0.016 0.015
Co  wt%  0.20 0 0.042 0.07 0.10
Ti  wt%  0.67 0 0.01 0.08 0.01
SR  s−1 200 0.0001 6.44 34.74 0.000125
T ◦C 200 −196 −1.49 66.79 24
GS �m  200 5.90 29.19 28.16 23.8
TSS  MPa  1951.17 14.22 848.33 282.78 1078.33
TSN –  0.65 0 0.25 0.14 0.37

Output Units Maximum Minimum Mean SD

DIM – 1 0 0.22 0.24

2. Results and Discussion

2.1. Analytical procedure

We have extensively carried out literature study to understand
the martensitic transformation micro-mechanisms and their inter-
pretation while explaining the mechanical behaviour of austenitic
stainless steels under various operating conditions. For the present
model, inputs are chosen according to the knowledge gained
from the published literatures and from the industrial experi-
ences. The inputs of the model are chosen to be: chemistry of
austenitic stainless steels, strain rate, initial austenite grain size,
temperature of testing, true stress and true strain. The target (i.e.
output) is the extent of DIM. The other influencing parameters
for martensitic transformations are stress state, initial microtex-
ture of austenite and strain path, which were not, included as
input parameters because there is lack of published data avail-
able. In most of those literatures, we considered those studies,
which deal with different grades of austenitic stainless steels with
different grain sizes under uniaxial loading at various testing con-
ditions. In most of those literatures, DIM is generally represented
as strain induced martensite. Various techniques have been used
for quantifying the DIM formation in those literatures, such as:
XRD, magnetic methods etc. The most common and available
graphs are found to be: (a) stress–strain and (b) DIM as a func-
tion of strain. We  have extensively extracted data (i.e. strain, DIM
fraction and corresponding stress value) from those two graphs
with their corresponding testing conditions and material history
reported in corresponding literatures. We  have tabulated all the
data in a single spreadsheet and the size of the database, which
are used for neural network analysis to be 1600 rows. The litera-
tures (1954–2010), from where those data digitized are mentioned
to be [1,4–27]. The statistics of the whole database are given in
Table 1. It is emphasised that unlike linear regression analysis,
the ranges stated in Table 1 cannot be used to define the range
of applicability of the neural network analysis. This is because
the inputs are in general expected to interact each other. We
shall see later that it is the Bayesian framework of our neural
network analysis, which makes possible the calculation of error
bars whose magnitude varies with the position in the input space,
which define the range of useful applicability of the trained net-
work. A visual impression of the spread of the data is shown in
Fig. 1(a–o).

2.2. Empirical modelling

A neural network is a general method of regression analy-
sis in which a very flexible non-linear function is fitted to the
experimental data. It can capture the enormous complexity in the
database, which avoid over fitting [28]. It is nevertheless useful to
discuss some salient features, to place the technique in the con-
text. The Bayesian framework of neural network has been used in
this present study. A neural network is generally trained on a set
of examples of input and output data with repetitive representa-
tions. The outcome of training is a set of co-efficient (i.e. weights)
and a specification of the functions, which in combination with
the weights correlating the inputs to the output. The training pro-
cess itself involves a search for the optimum non-linear correlation
between the inputs to the output and is computer intensive. Once
the neural network is trained, the estimation of the output for any
given inputs is very easy. The details of this method used here have
recently been comprehensively reviewed by MacKay [29] and the
original method is described thoroughly elsewhere [29–34].  One
of the difficulties with the blind data modelling is that of over fit-
ting, in which spurious details and the noise in the training data
are over fitted by the model. This gives rise to solutions that gen-
eralise poorly. MacKay [29–34] and Neal [35] have developed a
Bayesian framework for neural networks in which the appropriate
model complexity is inferred from the database. This Bayesian neu-
ral network modelling has two  important advantages. Firstly, the
significance of all the input variables is quantified automatically,
which is extremely important to understand the response of each
variable. Consequently, the model perceived significance of each
input variable can be compared against the existing metallurgical
theory. Secondly, the neural network’s predictions are accompa-
nied by error bars, which depend on the specific position in input
space. This quantifies the model’s certainty about its predictions. In
this present study, both the inputs and output variables were first
normalised within the range ±0.5 as follows:

xN = x − xmin

xmax − xmin
− 0.5 (1)

where xN is the normalised value of x; xmin and xmax are respec-
tively the minimum and maximum values of x in the entire dataset
(Table 1). The normalisation is straightforward for all the quantita-
tive variables. The normalisation is not necessary for this analysis
but facilitates the subsequent comparison of the significance of
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