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Abstract

This article introduces a technique for reconstructing crystal size distributions (CSDs) described by well-established batch crystallization
models. The method requires the knowledge of the initial CSD which can also be used to calculate the initial moments and initial liquid mass.
The solution of the reduced four-moment system of ordinary differential equations (ODEs) coupled with an algebraic equation for the mass
gives us moments and mass at the discrete points of the given computational time domain. This information can be used to get the discrete
values of size independent growth and nucleation rates. The discrete values of growth and nucleation rates along with the initial distribution
are sufficient to reconstruct the final CSD. In the derivation of current technique the Laplace transformation of the population balance equation
(PBE) plays an important role. The proposed technique has dual purposes. Firstly, it can be used as a numerical technique to solve the given
population balance model (PBM) for batch crystallization. Secondly, it can be used to reconstruct the final CSD from the initial one and also
vice versa. The method is very efficient, accurate and easy to implement. Several numerical test problems of batch crystallization processes are
considered here. For validation, the results of the proposed technique are compared with those from the high resolution finite volume scheme
which solves the given PBM directly.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Population balance models; Crystallization processes; Laplace transformation; Model reduction; Mathematical modeling; Reconstruction technique

1. Introduction

The problem of obtaining a reliable reconstruction of a
crystal size distribution (CSD) from a finite number of its
low-order moments has been investigated since the last cen-
tury (Akhiezer, 1975; Shohat and Tamarkin, 1943). In spite
of its long history there are several issues which have still no
unique answer. There are several scientific disciplines where
such problems arise namely, chemical and process engineer-
ing, electronic engineering, nuclear physics, image analysis,
biotechnology, and so on.

On the other hand, the standard method of moments (MOM)
and related approaches like the quadrature method of mo-
ments (QMOM) and its direct alternative (DQMOM) have been
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applied in chemical engineering (Barrett and Jheeta, 1996;
Madras and McCoy, 2004; Marchisio et al., 2003; Vollmer,
2005), mainly due to their low computational costs. In partic-
ular, when external features like turbulent flow properties play
an important role for the process under consideration, efficient
numerical methods are needed for describing the population
interacting with this flow. In the method of moments only a fi-
nite number of moments associated with the real distribution
is finally determined by the numerical procedure. The other
possibility is to find the values of different moments indirectly
from experimental measurements, since the particle sizing de-
vices provide general knowledge about e.g., the mean crystal
size, a chord length distribution or even directly the complete
CSD. Once the CSD is known the corresponding moments can
be readily computed, see Marchisio et al. (2002).

After having these moments, the problem which remains
open is to reconstruct the corresponding CSD in a best
possible manner. The CSD generally constitutes the key in-
formation for the judgement of the quality of a process.
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Therefore, the reconstruction procedure is highly important
and necessary.

Being an ill-posed inverse problem, theoretically and practi-
cally it is difficult to find an accurate and relatively fast method
which can be generally applied in all fields. In the last decades,
several authors have proposed different techniques (see Inglese,
1994; John et al., 2007; Taglian, 1999, 2001, and references
therein). However, no satisfactory unified numerical method is
available in literature for the reconstruction of a function from
a finite number of its moments. Most of the available meth-
ods were introduced for particular and simpler cases requiring
specific assumptions.

Recently, John et al. (2007) have compared different possi-
ble methods namely, prescribed functions, discrete method and
spline-based reconstruction allowing such a reconstruction of
the CSD. They have compared these methods in terms of effi-
ciency and accuracy. Their article also contains a nice review
of the previous work in this direction.

An approach similar to the technique proposed in this arti-
cle was introduced by Hounslow and Reynolds (2006) for the
one-dimensional (1D) batch crystalization model. However, in
their article instead of the Laplace transformation the method
of characteristics was used as a basic tool for the scheme
derivation.

In this paper, we propose an efficient technique for the re-
construction of CSD of 1D batch crystallization models. In this
derivation the Laplace transformation (Doetsch, 1974; Jaeger
and Newstead, 1949; Wylie, 1995) has been used as a basic
tool. The Laplace transformation transforms the given popu-
lation balance equation (PBE) to a linear ordinary differential
equation (ODE). The transformed PBE can be solved analyti-
cally if the growth and nucleation rates are known. Afterwards,
the inverse Laplace transformation has been used to get a re-
lation for the actual number density which is coupled with an
implicit function of time variable. The method works as fol-
lows. From the initial CSD one can calculate the required four
initial moments. These initial moments along with the given
initial mass can be used as initial data for the four-moment sys-
tem of ODEs coupled with an algebraic equation for the mass.
The solution of this coupled system gives us moments and mass
at the discrete points of the computational time domain. This
discrete data can be used to get the discrete values of growth
and nucleation rates in the same time domain. The growth and
nucleation rates along with the initial CSD are sufficient to re-
construct the final CSD. The current method is very efficient,
accurate and easy to implement compared to the other methods
solving the given PBM directly. For validation, the numerical
results of the current technique are compared with the high res-
olution finite volume scheme of Koren (1993). This and other
types of high resolution finite volume schemes have already
been used for solving batch crystallization models (see Ma
et al., 2002; Qamar et al., 2006, 2007).

The current work is inspired by our recent work (Qamar and
Warnecke, 2007) on the analytical and numerical investigations
of the 1D batch crystallization model. In that article we have
proved the local existence and uniqueness of the solution of
a batch crystallization model for the size independent growth

rate. Moreover, the issues of positivity (monotonicity), consis-
tency, stability and convergence of the proposed high resolution
scheme of Koren (1993) were analyzed and proved.

This article is organized as follows. In Section 2, we give
the proposed 1D batch crystallization model. In Section 3, we
present the reduced four-moment system of the given PBE
coupled with a mass balance equation. The Laplace transfor-
mation is used to transform the given PBE to a linear ODE
which is then solved analytically, assuming that growth and
nucleation rates are known. Afterwards, an inverse Laplace
transformation is used to get back the actual number density.
Finally, we present our numerical algorithm for the recon-
struction of the 1D particle size distribution. In Section 4, we
present some numerical test problems for the 1D batch crys-
tallization processes. Lastly, Section 5 gives conclusions and
remarks.

2. One-dimensional batch crystallization model

We consider a relatively simple population balance model
(PBM) for a batch crystallization process. Attrition is not ex-
plicitly included in this batch crystallization model. Instead,
the production of small fragments by attrition is incorporated
implicitly in the nucleation rate. Moreover, breakage and ag-
glomeration of crystals are also neglected. Consequently, the
resulting batch models are not expected to be able to predict
the effects of, e.g., scale-up or changes in the operating condi-
tions. Nevertheless, they are capable of describing the behavior
of a given process in the relevant operating range fairly well.

In the 1D batch crystallization model, the size of crystals is
defined by a characteristic length x. The CSD is described by
the number density function n(t, x)�0, which represents the
number of crystals per crystal length. Balancing the number of
crystals in an infinitesimal interval of crystal length, a partial
differential equation is obtained which, together with appro-
priate initial and boundary conditions, describes the temporal
evolution of the CSD (Miller and Rawlings, 1994)

�n(t, x)

�t

= −G(t, m)
�n(t, x)

�x
+ B0(t, m) �(x − x0), (t, x) ∈ R2+,

(2.1)

n(t0, x) = n0(x), x ∈ R+, (2.2)

where t0 �0 and R+ := (0, ∞). Here, m := m(t) > 0 repre-
sents the solute mass in the liquid phase, n0(x) ∈ R�0 de-
notes the CSD of seed crystals added at the beginning of the
batch, G(t, m)�0 is assumed to be size independent growth
rate, B0(t, m)�0 is the nucleation rate at minimum crystal size
x0 > 0 and � is the Dirac delta distribution.

The jth moment �j (t) of the number density n(t, x) is
defined as

�j (t) :=
∫ ∞

0
xjn(t, x) dx. (2.3)
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