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a b s t r a c t

The effect of Al addition on the microstructure and tensile properties of Ni3(Si,Ti) alloys with an L12

ordered structure, which were fabricated through thermomechanical processing from arc-melted ingots,
was investigated. Al was added to a Ni3(Si,Ti) alloy by using two methods such that Al substituted for
(1) only Ti and (2) both Ni and Ti along a Ni3(Si,Ti)–Ni3Al pseudo-binary line. In the case of the alloys
prepared by the former method, the addition of more than 4 at.% Al resulted in a two-phase microstructure
consisting of disordered fcc Ni solid solution dispersions in the L12 matrix, while in the case of the alloys
prepared by the latter method, the addition of 4 at.% Al retained the L12 single-phase microstructure. In the
case of the 4 at.% Al-added alloys, the room-temperature tensile properties were similar and independent
of the alloying methods, whereas the high-temperature yield stress was higher in the alloys prepared by
the latter method than in the case of the alloys prepared by the former method. These results suggest
that a single-phase microstructure consisting of an entire L12 structure is favorable for obtaining high-
temperature tensile properties.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An L12-type Ni3(Si,Ti) alloy, which has been developed by
adding Ti to Ni3Si [1], possesses many attractive properties such as
those of high-temperature structural materials. For example, the
Ni3(Si,Ti) alloy shows a positive temperature dependence of yield
strength and exhibits higher strength and peak temperature in the
strength versus temperature curve than Ni3Si [1]. Further, the rela-
tively low density (∼8 g/mm3) and the good corrosion resistance of
the Ni3(Si,Ti) alloy are favorable properties for structural materials
[2]. In addition, a high tensile ductility over a wide range of temper-
atures due to the prevention of the propensity for an intergranular
fracture is a notable feature of the Ni3(Si,Ti) alloy [1]. Such high
tensile ductility of the Ni3(Si,Ti) alloy is noteworthy because most
intermetallic alloys have limited ductility, particularly at low tem-
peratures. Recently, heavily cold-rolled thin sheets and foils of the
Ni3(Si,Ti) alloy were fabricated from conventional polycrystalline
ingots via a repeated warm-rolling and annealing process [3]. The
Ni3(Si,Ti) thin sheet annealed at an intermediate temperature (e.g.,
around 900 K) exhibited an extremely high tensile strength and
yield strength (more than 2 GPa) with a reasonable fracture strain at
room temperature and was superior to the commercial nickel alloys
and stainless steels below 873 K [3]. However, the tensile strength
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and the elongation of the annealed Ni3(Si,Ti) thin sheets were found
to rapidly decrease at temperatures beyond 873 K with an increase
in the temperature, and therefore, the improvement of the high-
temperature mechanical properties is considerably desired.

Thus far, the improvement of high-temperature tensile prop-
erties for the Ni3(Si,Ti) alloy has been attempted by means of an
alloying technique [4–6]. Transition metals, Hf, Nb, Cr, Fe and Mn,
were added to the Ni3(Si,Ti) alloy at 1 at.% level below their sol-
ubility limits [4]. However, their addition was less effective in
improving the high-temperature tensile properties of the Ni3(Si,Ti)
alloy. Further, 2 at.% of Al, Cr, and Mo metals was added to the
Ni3(Si,Ti) alloy [6]. The 2 at.% addition of Al was below the solubil-
ity limit in the Ni3(Si,Ti) matrix; therefore, the new alloy retained
the L12 single-phase microstructure. On the other hand, the 2 at.%
addition of Cr was beyond the solubility limit in the Ni3(Si,Ti) matrix
and consequently resulted in a two-phase microstructure consist-
ing of disordered fcc Ni solid solution dispersions in the L12 matrix.
It was found that the addition of Al as well as Cr was slightly effec-
tive in improving both high-temperature ductility and oxidation
resistance [6].

In the present study, we selected Al as an alloying element for
the Ni3(Si,Ti) alloy because addition of Al is expected to yield a
number of microstructural, mechanical, engineering, and economic
advantages such as low density, low cost, the use of a ubiqui-
tous element, high oxidation resistance, high corrosion resistance,
and large solubility in the L12 matrix. In order to make Al largely
soluble in the Ni3(Si,Ti) matrix, various alloying procedures were
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Table 1
Chemical compositions, microstructures, and hardness of the alloys used in this study.

Group Alloy Ni (at.%) Si (at.%) Ti (at.%) Al (at.%) B (wt ppm) Microstructure Hardness (HV)

Group A Base 79.5 11.0 9.5 – 50 L12 385
#A2 79.5 11.0 7.5 2.0 50 L12 376
#A4 79.5 11.0 5.5 4.0 50 L12 + NiSS 375
#A6 79.5 11.0 3.5 6.0 50 L12 + NiSS 367
#A8 79.5 11.0 1.5 8.0 50 L12 + NiSS 372

Group B #B4 78.9 11.0 6.1 4.0 500 L12 389
#B8 78.3 11.0 2.7 8.0 500 L12 + NiSS 391

taken into consideration. In this study, the microstructure, cold
workability, and high-temperature tensile properties of the Al-
added Ni3(Si,Ti) alloys were investigated, and the alloy composition
and the microstructure preferable for high-temperature structural
materials were suggested.

2. Experimental procedure

The base composition of the Ni3(Si,Ti) alloy used in this study
was 79.5 at.% Ni, 11.0 at.% Si, and 9.5 at.% Ti doped with 50 wt ppm
B. Boron doping of the Ni3(Si,Ti) alloy is necessary to suppress
the intergranular fracture due to environmental embrittlement at
room temperature [7]. The quaternary element Al was added to the
base alloy composition by using two methods: (1) Al substituted
only for Ti and (2) Al substituted both for Ni and Ti. The samples
prepared by the two methods are hereafter referred to as groups
A and B, respectively (Table 1). In the case of group A, the addi-
tion of 2, 4, 6 and 8 at.% Al content was designed to reduce the
amount of Ti that was harmful for the oxidation resistance of the
Ni3(Si,Ti) alloy [8]. In the case of group B, the addition of 4 and
8 at.% Al content was designed to reduce the amount of Ni and Ti,
forming a continuous L12 solid solution along the pseudo-binary
Ni3(Si,Ti)–Ni3Al line, as shown in Fig. 1. In the alloys of group B,
an increased amount of 500 wt ppm B was added because a higher
boron content was required in Ni3Al than in Ni3(Si,Ti) to suppress
the intergranular fracture [9].

Alloy ingots were prepared by non-consumable arc melting in
an argon gas atmosphere on a copper hearth. All the ingots were
homogenized at 1323 K for 48 h in a vacuum and then cut into
several plates with a thickness of approximately 10 mm using an
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Fig. 1. Alloy compositions used in this study. Note that Al contents were
changed along two pseudo-binary lines, Ni79.5(Si,Ti)20.5–Ni79.5Al20.5 (group A) and
Ni79.5(Si,Ti)20.5–Ni76Al24 (group B).

electro-discharge machine (EDM). These plates were warm-rolled
at 573 K and then annealed at 1273 K for 5 h in a vacuum. This pro-
cedure was repeated until the thickness of the plate became 2 mm.
The sheets were finally annealed at 1273 K for 1 h in a vacuum
before cold rolling. Cold rolling was conducted without interme-
diate annealing up to 90% reduction in thickness. Reduction in
sheet thickness per rolling pass was approximately 0.1 mm both
for warm and cold rolling. The thickness of the obtained cold-rolled
sheets was approximately 0.2 mm. Microstructural observations
were carried out by using a scanning electron microscope (SEM;
JEOL, JSM-5600 operating at 15 kV) and a transmission electron
microscope (TEM; JEOL, JEM-2000FX operating at 200 kV). Further,
X-ray diffraction (XRD; RIGAKU, RINT2500HK) was performed to
determine constituent phases and second-phase dispersions by
using Ni-filtrated Cu K� radiation at an accelerated voltage of 30 kV
mostly with a scan speed of 1◦. In the XRD measurement, bulk
materials of the alloys were used as the specimens.

Dog-bone-shaped tensile test pieces with a length of 10 mm,
width of 4 mm, and thickness of 0.2 mm were prepared by using
the EDM. Room-temperature tensile tests were carried out in air
by using the cold-rolled and fully recrystallized (1173 K; 1 h) speci-
mens. High-temperature tensile tests were conducted in a vacuum
in a temperature range of room temperature to 973 K by using the
fully recrystallized specimens. A strain rate of 8.4 × 10−5 s−1 was
used in both room-temperature and high-temperature tensile tests.
After the tensile tests, the fracture surfaces of the test pieces were
examined by using an SEM.

3. Results and discussions

3.1. Microstructure

Fig. 2 shows the SEM microstructures of the alloys in group A
(i.e., alloys #A2, #A4, #A6 and #A8) after homogenization at 1323 K.
Alloy #A2 as well as the base alloy (not shown here) showed an
L12 single-phase microstructure, indicating that 2 at.% Al is sol-
uble in the L12 matrix. On the other hand, the other alloys (i.e.,
alloys #A4, #A6 and #A8) exhibited a two-phase microstructure
containing second-phase dispersions. At Al contents above 2 at.%,
the volume fraction of the second-phase dispersions increased with
an increase in the Al content. Bimodal microstructures were more
or less observed in the alloys with a two-phase microstructure:
eutectic-like two-phase microstructures consisting of L12 and Al
(fcc) phases were mixed with a featureless L12 single-phase region.
This eutectic-like microstructural feature may be explained such
that the Al phase with Ni-rich content is formed as a primary phase
and present in the dendritic core region during solidification and
remains as a two-phase microstructure after homogenization.

Fig. 3 shows the XRD profiles of alloy #A4 with a two-
phase microstructure, together with the alloys with a single-phase
microstructure (i.e., the base alloy and alloy #B4 (see later)). The
XRD profiles of all alloys shown in Fig. 3 were basically identical to
each other, although the relative peak intensities of each diffrac-
tion were slightly different among the shown alloys because of the
crystallographic textures of these alloys. The observed reflection
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