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a b s t r a c t

The effect of the selective additions of hafnium (Hf) on the variation of creep life and microstructure of
an experimental nickel base superalloy has been investigated. Artificial neural networks (ANNs) were
utilized to predict the effect of Hf content on the creep rupture life at temperatures of 850–950 ◦C and
showed that, with the addition of Hf, the creep life was prolonged. This effect was more pronounced at
low stress than at high stress and was most noticeable with the first 0–0.6 wt% of Hf addition. Analysis
of the correlation between microstructure and creep life of 0.4 wt% Hf doped alloy revealed that at low
stresses the initiation and propagation of microcracks from MC carbides was retarded, and the beneficial
effect of grain boundary strengthening on creep life was significant, although the tendency of appearance
of �′ rafting in 0.4 wt% Hf doped alloy is very close to that in Hf-free alloy. This was in agreement with
above ANNs prediction. In addition, the relationship between the appearance of �′ rafting and lattice
misfit with regards to Hf content was discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Corrosion resistant superalloys have been employed specifically
for the production of industrial gas turbine blades for many years,
but the life of this component is limited by the creep deformation
and fracture. It is believed that the addition of minor elements such
as carbon, boron, hafnium and zirconium in the alloys can improve
the creep properties through grain boundary strengthening [1,2].
The role of Hf on the mechanical properties of superalloys is based
on precipitation strengthening of the �′ phase [3]. The amount limit
of Hf addition is 0.5 wt% in an earlier study [4], however, it is found
in later experiments that Hf is beneficial to creep properties in
amount of ∼1.5 wt% [1]. Actually, this depends on the alloy type
and service condition. Hf is used mainly to improve the interme-
diate temperature creep properties or to reduce the tendency for
grain boundary tearing during directional solidification. In addi-
tion, at high temperatures, Hf has a strong affinity for sulfur so that
it can prevent grain boundary embrittlement caused by sulfur. Hf
has also been seen to have a slight impact on yield strength and
hold-time-crack growth rates [5].

In this study, the effect of Hf on creep rupture life, creep sta-
bility and element segregation is discussed in a corrosion resistant
superalloy. A three-layer artificial neural network (ANN) was set up
to predict creep rupture life, using the 16 chemical elements, grain
size, heat-treatment temperature and hold time, test temperature
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and stress to make 25 input parameters into the algorithm. The
Levenberg–Marquardt (LM) learning algorithm was employed to
train the model by using laboratory experimental data. This trained
network was tested on a single set separated from the rest of the
data and a good correlation between the experimental and pre-
dicted results has been obtained. Finally, the ANN simulated results
show the effect of Hf content on the creep rupture life at selective
temperatures and stress. To study the microstructural characteris-
tics in conjunction with the creep properties, the authors undertake
a detailed analysis on carbides, grain boundary, and �′ stability in
Hf-free alloy and 0.4 Hf alloy. An attempt has been made to cor-
relate microstructure and creep rupture life at the investigated
temperatures and stresses.

2. Experimental

The alloys studied in the work are based on a corrosion exper-
imental alloy with chemical composition in wt%: 15.5 Cr, 10.8
Co, 5.6 W, 2.1 Mo, 3.2 Al, 4.6 Ti, 0.2 Nb, 0.075 B, 0.075 C and
the balance Ni (Hf-free alloy). This composition has been modi-
fied with the addition of 0.25 wt% Hf doped alloy (0.25 Hf alloy)
and 0.4 wt% Hf doped alloy (0.4 Hf alloy). The alloys were pro-
duced in an industrial scale vacuum induction furnace. The ingots
were given standard heat treatment as follows: 1170 ◦C, 4 h, A.C.
+1050 ◦C, 4 h, A.C. +850 ◦C, 16 h, A.C. Creep rupture tests were per-
formed at 800–950 ◦C over a stress range of 120–500 MPa in air.
The creep specimens were of 10 mm diameter and 100 mm gauge
length. The temperature along the gauge length was maintained
at ±2 ◦C through out the creep test. Most of creep tests were
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Fig. 1. A schematic description of artificial neural network configuration and the relationships between the input and output vectors of one neuron.

run to rupture, whereas some tests were interrupted for scanning
electron microscopy (SEM) observations. The average element dis-
tribution was measured quantitatively with an electromicroprobe.
The X-ray data were obtained from a Max-RA X-ray diffractome-
ter with Cu K�1 radiation (� = 0.154056 nm) in the angular range
of 15◦ ≤ 2� ≤ 85◦ with a step size of �2� = 0.02◦. The time per step
t = 12 s.

3. Artificial neural network model for creep rupture life

In the materials science field, the use of ANNs for forecasting,
functional approximation, optimization, simulation, modeling and
performance prediction of thermal systems has become increas-
ingly popular in the last two decades due to its short development
and fast processing speed [6–8]. ANNs can provide powerful empir-
ical modeling techniques for complex experimental data, which
may be nonlinear, inter-dependent, noisy and non-systematic. ANN
architecture is composed by an input layer, an output layer and
one or more hidden layers. The neuron (elementary processor of
the ANN) is characterized by (i) the input being the sum of flow
coming from the other neurons connected upstream; (ii) the acti-
vation function (transfer function) making the input nonlinear
and animating the neuron by determining its activation; (iii) the
output resulting from the transformation supplying the neurons
connected downstream.

Fig. 2. Average squared error guessing mean with respect to number of iteration.

In this study, the feed-forward multilayer perception is used
and trained with a back propagation algorithm. In convention-
ally cast superalloys, besides chemical composition, some other
factors such as �′ precipitates and grain size can influence
mechanical properties obviously. These microstructural charac-
teristics, which should be included in NN input parameters, are
hard to be specified. However, �′ characteristics of a given cast
superalloy are directly dependent on heat treatment, and there-
fore heat-treatment parameters can be considered as indirect
microstructural input parameters. Besides 16 chemical elements,
grain size, temperature and stress, the following heat-treatment
parameters are considered in input parameters: solution temper-
ature (T1) and holding time (t1), high temperature aging (T2) and
holding time (t2), and low temperature aging (T3) and holding time
(t3) with the resulting creep life as the output of the neural network
model. Thus, the structure of architecture is chosen as 25–x–1. Fig. 1
shows the structure of ANN model with various layers. The inputs
and outputs should be first normalized within the range of 0–1
[7,9,10]. The output xj produced by the neuron i in the hidden layer
is given by the following relationship:

xj = f

(
n∑

i=1

WjiXi + b

)
(1)

where f is the activation function, n the number of elements in the
input layer, Wji the weight associated with the connection between
the neuron i in the input layer and the neuron j in the hidden layer,
whose output is xj, and b is the offset or bias which shifts the acti-
vation function along the basic axis. To evaluate the performance
of such a network, the average squared output error (ASE) is used:

ASE = 1
n

n∑
j=1

[y(j) − d(j)]2 (2)

where y(j) is output of real data, d(j) is the network desired or target
output value for the jth sample and n is the total number of data
points.

4. Results and discussions

4.1. Modeling results

Data used in this work was got from the China Aeronautical
Materials Handbook [11] and materials database [12]. Fig. 2 shows
the relation between absolute error and interaction. To balance the
accuracy and convergence speed, 400 iterations were performed
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