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a b s t r a c t

An atomistic based finite bond element model has been developed to study the effects of multiple
Stone–Wales (5-7-7-5) defects on mechanical properties of graphene sheets and carbon nanotubes. The
element formulation includes 8 degrees of freedom reducing computational cost compared to the 12
degrees of freedom used in other FE type models. The coefficients of the elements are determined based
on the analytical molecular structural mechanics model developed by the authors. The model uses the
modified Morse potential to predict the Young’s modulus and stress–strain relationship of perfect and
defective nanotubes and graphene sheets. The variation of ultimate stress, strain at failure, and Young’s
modulus values of carbon nanotubes and graphene sheets have been examined as a function of the
distance between two defects aligned in the axial and hoop directions. The mechanical properties as
a function of the number of defects in the hoop direction are also studied. It is found that the moduli
are sensitive to the tube lengths when the total tube length is used to compute the strain. If one uses a
local defective length to define the strain, a size independent modulus can be obtained for the defective
region. The diameter of the affected region (2 nm) from a single defect is defined as the defective length
and is used for all different tube lengths examined in the present study. The effects of defect density on
mechanical properties of tubes of any lengths are also discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) [1] have shown several favorable
physical attributes, such as small size, low density, high stiffness,
and high strength as well as excellent electronic and thermal prop-
erties [2–7]. These exceptional mechanical and physical properties
along with low weight of CNTs and recent improvements in their
synthesis and purification techniques make CNTs excellent candi-
dates for use in composite reinforcement [8–10].

There is evidence that defects can appear at the stage of
CNT growth and purification [11,12] during device or compos-
ite processing (e.g. chemical functionalization) [13,14], or under
mechanical strains [15]. Research has indicated that even a small
number of defects in the atomic network will result in some degra-
dation [16,17] of their mechanical properties. Such defects also act
as scattering centers for phonons propagating along the tube axis,
thus reducing intrinsic tube conductivity.
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Molecular mechanics/dynamics and ab initio methods are
suitable for studying defects but are limited in scale and are
computationally expense. Recently, continuum mechanics based
models for CNTs have been developed using the harmonic energy
potential [18–20]. These models reduce computational cost sig-
nificantly, but can only be used to investigate elastic properties,
such as the Young’s modulus or Poisson’s ratio. To fully predict
the stress–strain relationship and failure mechanism of CNTs, these
methods are not sufficient. The Brenner potential function [21] is
considered more accurate and versatile. It can handle changes in
atom hybridization and bonds with atoms other than carbon. A
continuum mechanics approach directly incorporating the Bren-
ner potential function has been developed by Huang’s group [22,23]
to model elastic properties and stress–strain relationships of car-
bon nanotubes based on a modified Cauchy–Born rule. Based on
the modified Morse potential function [23], which is simpler than
the Brenner potential, the authors have developed models for per-
fect and defective CNTs [24,25]. The developments have the ability
to predict the ultimate stress and other mechanical properties,
including nanotube’s nonlinear stress–strain relationship. The ana-
lytical model [24] has been extended to solve mechanical responses
of defect-free single- and multi-walled CNTs under internal and
external pressure loadings [26,27] as well as aligned nanotube
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composites [28]. The analytical model not only provides simple
closed-form solutions but also presents a better insight of the role
of the atomic networks.

Effects of defects on mechanical behaviors of graphene sheets
and nanotubes have been investigated using computationally
expensive methods [4,16,17,23,29–32]. While continuum mechan-
ics based models have not been well developed for predicting the
effects of defects on mechanical properties of CNTs and nanotube
composites. Research involving the Stone–Wales defect preformed
by Tserpes et al. [33,34] using the finite element (FE) based model
does not include the deformation of the original nanotube struc-
ture around the nucleation site, which may not be true in general
as atoms redistribute to minimize energy. The authors [25] pro-
posed a simple way to simulate the formation of a Stone–Wales
(5-7-7-5) defect using an interaction mechanics method to calcu-
late the deformations caused by the formation of a Stone–Wales.
In this study, the effect of multiple 5-7-7-5 defects on the Young’s
modulus, ultimate strength, and strain at failure of single-walled
CNTs (SWCNTs) of various sizes will be further investigated.

2. An atomistic based finite bond element model

A single-walled carbon nanotube can be viewed as a hol-
low cylinder rolled from a graphene sheet, composed of carbon
hexagons. The diameter of the nanotube can be calculated
as d =

(√
3a/�

)√
(n2

1 + n2
2 + n1n2), where a = 0.142 nm is the

carbon–carbon bond length, and the pair of integers (n1, n2) rep-
resent its chirality, such as armchair (n1 = n2) and zigzag (n2 = 0)
nanotubes.

The modified Morse potential function [23], which correlates to
the Brenner potential function for strains below 10%, is used in the
present study. The new term, Etorsion, has been added to include
the bond energy in relation to bond twisting ��. This term can be
neglected for perfect nanotubes, but may be more significant in the
case of defective tubes. This term was excluded in previous studies
[20,24–27]. The energy potential function is given below:

E = Estretch + Eangle + Etorsion (1)

where Estretch is the bond energy due to bond stretch �r, and Eangle
is the bond energy due to bond angle variation ��, and

Etorsion = 1
2

k�(��)2 (2)

The parameters associated with the terms Estretch and Eangle are
given in Refs. [24,25]. The force constant in Eq. (2) is taken as
k� = 0.278 nN nm/rad2. [19,35,36].

It should be noted that the interaction between bond stretch,
bond angle variation and bond twisting has been neglected in this
nonlinear problem. The Brenner potential will be employed in our
future work to evaluate the effect of such interaction. The effect
of van der Waals interaction and the electrostatic interaction have
also been neglected because they contribute much less than the
covalent bond energies in the covalent systems as indicated in Ref.
[20].

The stretch force, the angle-variation moment and the tor-
sional moment can be obtained from differentiations of Eq. (1) as
functions of bond stretch, bond angle variation and torsion angle
variation, respectively:

F(�r) = 2ˇDe(1 − e−ˇ �r)e−ˇ �r (3)

M(��) = k� ��[1 + 3ksextic(��)4] (4)

M�(��) = k� �� (5)

A constant bond torsional stiffness is implied by Eq. (5). The stretch
stiffness and the angle-variation stiffness can be further obtained

from differentiations of Eqs. ((3) and (4)) as functions of bond
stretch and bond angle variation, respectively:

kr(�r) = 2ˇD2
e (1 − 2e−ˇ �r)e−ˇ �r (6)

k(��) = k�

[
1 + 15ksextic(��)4] (7)

The effective “stick–spiral” model has been used to simulate the
mechanics of defect-free SWCNTs based on a unit cell method [24].
The model uses Eq. (3) to simulate the stick, which is a force–strain
relationship of a carbon–carbon (C–C) bond. It is assumed that the
stick has finite torsional stiffness and infinite bending stiffness. To
include the torsional stiffness term of the stick, Eq. (5) is used. Eq.
(4) models the spiral spring behavior of the tube, which is angle
bending moment that results from a change in bond angle.

A defective nanotube cannot be modeled with the unit cell
approach because it lacks local symmetry. To effectively model the
response of a defective nanotube, a molecular mechanics or finite
element type model is needed. In this paper, a finite element model
based on the “stick–spiral” method is developed.

In a typical finite element type model [19], beam elements have
section stretch stiffness, flexural rigidity, and torsional stiffness,
which amounts to 12 degrees of freedom (DOF). In the present
model, we assume that bond element has an infinite bending stiff-
ness with finite bending stiffness at the end joints, essentially the
‘stick’ and ‘spiral’. The beam element will represent the C–C bond
in this model with stretching, angle change, and bond torsion, and
has a total of 8 DOF as shown in Fig. 1. This element can be stretched
and twisted along its axis and bent by displacement without bond
angle changes. The bond angle variation of the bond element can be
associated with the relative transverse displacement (e) between
the two ends as d� = e/a (Fig. 1c). The present approach, designated
the finite bond element model, is expected to give the same solu-
tion as the “stick–spiral” model [20,24] for defect-free CNTs. The
models with infinite bending stiffness [20,24,25] represent the true
physical deformation modes and are able to predict both in-plane
stiffness (Young’ modulus) and Poisson’s ratio of CNTs accurately.

For the bond element defined in Fig. 1 in a three-dimensional
space, the elemental equilibrium equation can be established for
every bond element. The final system of equations with appropriate
boundary conditions imposed can be solved by the displacement-
control Newton–Raphson method. A MATLAB program has been
written based on the finite bond element method for SWCNTs sub-
jected to tensile loadings.

It has been verified [25] that the calculations based on our FE-
based finite bond element model are giving the same results as
those obtained from the analytical model [24] for defect-free CNTs.

3. Progressive failure analysis of defective graphene sheets
and SWCNTs

3.1. Stone–Wales defect formation

Various types of defects exist in CNTs, such as vacancies and
topological defects (e.g. 5-7-7-5). The Stone–Wales 5-7-7-5 defect
involves the 90◦ rotation of a carbon bond with a new configuration
as shown in Fig. 2. The effect of the SW defect on the configuration
is believed to be local and limited to atoms in the neighborhood
of the defect. Atoms far away from the defect undergo uniform
deformation and their geometric configurations are the same as
the defect-free tubes. It should be noted that the CNT’s in the ref-
erence self-equilibrium configuration were assumed to have zero
stress in our simulations as did in all referenced papers based
on MM and/or MD [17–20,23,24,37]. For atoms near the defect,
an interaction (similar to contact) mechanics concept is used to
determine their initial equilibrium positions, which is possible by
treating the defect formation as the result of interaction between



Download English Version:

https://daneshyari.com/en/article/1579948

Download Persian Version:

https://daneshyari.com/article/1579948

Daneshyari.com

https://daneshyari.com/en/article/1579948
https://daneshyari.com/article/1579948
https://daneshyari.com

