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Many mechanical properties of glasses and liquids, such as the large shear susceptibility compared to
the compressibility, seem strange and unexpected. However, they are basically the same as those found
for irradiated crystals at low defect concentrations. This finding is predicted by the Interstitialcy Theory
of Condensed Matter (ITCM). According to the ITCM, a liquid is a crystal containing a few percent of

Keywords: interstitialcies (dumbbell configuration), while a glass is a frozen liquid. Recent computer simulations
fll;jlsgss have supported this assertion. Among thermodynamic properties, changes of the shear modulus G and

entropy S play a key role in explaining the physics of condensed matter. The sensitivity of measured
shear modulus changes is typically about four orders of magnitude greater than that of the entropy.
Simple mechanical models can be given for the mechanical properties. The large entropy of melting of
the elements provides a proof that the agents of melting are interstitialcies. Shear modulus measurements

Interstitials

provide strong evidence for the ITCM.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The shear modulus G (measuring shape change at constant vol-
ume) is given as a second derivative of the free energy, as are the
bulk modulus B (volume change at constant shape) and the spe-
cific heat C. Some of the most characteristic features of the changes
in properties in and between the solid, liquid and glassy phases
of condensed matter are given by G and C. We focus here on G.
The specific heat has been discussed in more detail elsewhere [1].
Changes of the shear modulus can be measured with a precision
typically about four orders of magnitude greater than that of the
specificheator entropy. The in-phase response of condensed matter
to a periodic external stress gives the elastic constants. The out-of-
phase response gives the internal friction; these are related through
a Kramers-Kronig relation [2,3].

The earliest theory of matter was given by Aristotle (340-350
BC) [4] as in Fig. 1. His elements of earth, water, air and fire remain
more or less in place today, being replaced by the more modern
terms of solids, liquids, gases and thermal excitation, respectively.
The earth remains the ground state. The theory is simple, explains
everything, but predicts nothing. The latter fact excludes it from
what is required of a theory today.

The mechanical properties of condensed matter are often
described in terms of simple one-dimensional models consisting
of springs, dash pots, and mass points, as in Fig. 2. The first such
model was given by Hooke [5], in 1678. In three-dimensional mat-
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ter, the spring constant K represents the shear modulus G or bulk
modulus B.

In 1867, Maxwell [6] added a dash pot with viscosity 7 to allow
for viscous flow to give the equation of motion:

né+Ge=o (M

where o is the applied stress and ¢ is the total strain. This defines
a time constant t=7/G which is still much used today. For a step
function stress of duration T, or a periodic stress of period T, this
model provides a unification of solid and liquid-like behavior, with
the response solid-like for T« 7 and liquid-like for T>> 7.

In 1907, Einstein [7] used a simple spring and mass point model
to provide a unification of mechanical and thermal properties. The
frequency w = 1/G/p defined an Einstein temperature 6 through
the new quantum-mechanical relation Aw=k6. He realized that
there is no truly static state, even at zero temperature, since there
is a zero-point motion. For temperatures, T<6, for example, room
temperature in diamond, the oscillator is not fully excited, and the
specific heat is less than the classical Dulong-Petit [8] value of 3R,
where R is the gas constant. This represents a macroscopic obser-
vation of the wave nature of matter.

By adding a parallel combination of a dash pot and spring, Snoek,
in 1941 [9], was able to describe the behavior of carbon in iron
(C/Fe).This is the prototypical example of a dipolar point-defect sys-
tem. Zener later generalized this effect to other materials, thereby
establishing what is now known as the standard anelastic solid [10].
Analogous to dielectric effects, the relationship between the in-
phase and out-of-phase response to a periodic stimulus is known
as a Debye relaxation.
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Fig. 1. Illustration of Aristotle’s theory of matter [4].

In 1946, Frenkel published a book called the “Kinetic Theory of
Liquids” [11] that describes some of his research of the previous
20 years. Frenkel’s explicit mention of Condensed Matter (see for
example the preface) may be the first general use of the term that
has come to describe the largest part of research in physics today.
Frenkel recognized that liquids near the melting point, and far from
the critical point, are more solid-like than gas-like. He realized
that a suitable model for condensed matter needed to be a crystal
containing intrinsic point defects, either “holes” (vacancies) or “dis-
located atoms” (interstitials). At the time, little was known about
the properties of these defects and he proceeded supposing they
were vacancies. Since that time, it has been found that vacancies
cannot account for the entropy of melting; this will be discussed
further, subsequently. Then, interstitials are the only possibility.
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Fig. 2. Condensed matter models from Hooke [5] through ITCM (1992).
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Fig. 3. Frequency dependence of shear modulus—In-phase shear modulus (G’) and
out-of-phase component (G”) versus log @ at T=Tg, and 1.2 Tg. There is a high
frequency resonance and low frequency relaxation. The resonance is relatively insen-
sitive while the relaxation is strongly sensitive to temperature [13].

This is the basis of the ITCM [12]. It requires an additional parallel
spring—dash pot in the model. This represents a dipole oscillation
without diffusion. By analogy with magnetic effects, this is a diae-
lastic effect in contrast to the para-elastic behavior obtained when
the dipole diffuses through the material. It accounts, among other
things, for the fact that the so-called “infinite” frequency shear
modulus G, for a periodic stress in the Maxwell relation is less
(typically by about 30%) than the crystalline value [13] (Fig. 3). The
frequency dependence for the in-phase shear modulus G’ and the
out-of-phase component G”for the ITCM model is also shown in
the figure. There is a resonance at a frequency wg~ 1012, with a
relaxation at lower frequencies consisting of a superposition of a
Snoek-type and Maxwell-type relaxation. The Snoek effect repre-
sents an interstitialcy making a single jump and the Maxwell term
represents multiple jumps. The resonance is relatively insensitive
while the relaxation is strongly sensitive to temperature changes.

2. The entropy of melting

The large observed entropy of melting provides a proof that the
agents of melting must be interstitials in simple close-packed met-
als. Melting must require thermally excited intrinsic defects. The
only thermally accessible defects are vacancies and interstitials.
Dislocations are not equilibrium defects. The entropy of melting is
given by ASy, =L/Tm, where L is the latent heat and Ty, is the melt-
ing temperature. For most elements, it has been realized since the
nineteenth century to be about 10 J/mole K or about 1.15R (Table 1).
This is known as Richards’s Rule [14]. The vibrational entropy of
vacancies of a few metals became known in the 1960s [15], and its
value (~2) is simply too small by an order of magnitude to account
for the entropy of melting. This means that interstitials must be the
agents of melting.

Table 2 shows typical experimental results for the large vibra-
tional entropy Sy [16,17], and that the shear modulus change should
also be anomalously large [18] compared to the volume change.
Both these effects are accounted for by the dia-elastic resonance
element in the diagram for the ITCM model in Fig. 2.

Table 1
Ratio of entropy of melting to volume change AS;, =L/T,, (e.g. Cu).

at Tm Vac
ASIR 1.15 2
AVIV 0.45 0.8
Ll 26 2.5

AVIV
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