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a b s t r a c t

The creep of a dislocation on its glide plane is essentially controlled by three different stress fields:
the external applied stress, the internal stress field due to a multi-scale hierarchy of different obstacles
(the structural defects acting on the dislocation by short- or long-range interactions) and the thermal
stress field due to thermal fluctuations. The dislocation glide dynamics involves solution of a string
equation, which can be written as a Langevin equation. In this paper, it is shown that general ana-
lytical solutions of this equation can be found, allowing calculation of the plastic strain rate and the
amplitude-dependent internal friction (ADIF), by using simple assumptions concerning the multi-scale
hierarchy of obstacles and the mechanisms of Brownian dislocation creep through the different kinds of
interacting obstacles. It is also shown that several experimental observations are well explained by this
approach.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Several experimental observations related to dislocation creep
are not well explained, for instance: (i) the strong similarity of the
temperature dependence in a lot of different materials between
the yield stress �yield obtained by tensile experiments and the
stress amplitude �0 allowing a constant product �0·IF obtained
by amplitude-dependent internal friction (IF) measurements [1],
(ii) the very different behavior of the internal friction background
observed in different measurement frequency ranges, (iii) the
behavior of the r value (the ratio between the internal friction
and the modulus defect) observed during amplitude-dependent
internal friction (ADIF) measurements [2], and (iv) the “strange”
temperature dependence of the internal friction background in cer-
tain materials (IF ∝ exp(�T)) [3,4].

In the following, it will be shown that these experimental
observations are well explained by some general considera-
tions and solutions of the Langevin equation describing the
Brownian dislocation creep through a multi-scale hierarchy of
obstacles.
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2. Brownian dislocation creep

2.1. Langevin equation of dislocation creep

In order to describe the creep of a dislocation on its glide
plane (Fig. 1) when it is submitted to the internal stress field
due to obstacles (structural defects interacting with it), an equa-
tion taking into account the thermal fluctuations can be obtained
by using an analogy with the Langevin equation [5] describing
the Brownian motion of an over-damped particle in a viscous
fluid:

mv̇ + �v = Fappl + F̃(t) (1)

in which m is the inertial mass of the particle; �� is the stochastic
resistance due to the fluid viscosity, related to the thermal fluctua-
tions via the fluctuation–dissipation theorem; Fappl is the external
force applied to the particle and F̃(t) is the random thermal fluctu-
ating force exerted by the surroundings.

As dislocations are linear objects which are also over-damped
by a stochastic resistance due to phonon interaction (this has been
experimentally verified in metals by the existence of a phonon-
dislocation damping relaxation in the MHz range [6–8]), a Langevin
string model of the dislocation motion [9] can be written for the
displacement u(x, t) of the dislocation line on its glide plane, by
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Fig. 1. Schematic representation of the macro-creep u(x, t) of a dislocation on its
glide plane, through an internal stress field � int(x, y) generated by a three scale-levels
hierarchy of obstacles, under the effect of an applied stress �appl .
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= b�appl + b�int(x, u(x, t)) + b�̃th(x, u(x, t), t) (2)

in which � = ˛�b2 is the line tension of the dislocation, which is
due to the elastic deformation energy stored in the crystal by the
dislocation, with b the Bürgers vector of the dislocation, � the shear
modulus and ˛ a constant; Md = �c2

t is the mass per unit length of
dislocation line, which is due to relativistic effects, with ct the shear
wave velocity; Bph = Bph(T) is the damping or drag coefficient due to
phonons and electrons, which depends on temperature T [13]; b�appl
is the Peach–Koehler force per unit length of dislocation line, due to
the external applied stress �appl; �int(x, y) is the internal stress field
along the dislocation line (y = u(x, t)) due to the different obstacles
(the interacting structural defects) and �̃th(x, y, t) represents the
thermal stress field fluctuations along the dislocation line (y = u(x, t))
due to the acoustical and/or the optical phonons.

Solving directly such a complicated Eq. (2) without numerical
simulations is quite impossible. But it will be shown in the following
that one can find general analytical solutions of it, allowing one
to calculate the plastic strain rate and the amplitude-dependent
internal friction, by using some simple assumptions concerning the
multi-scale hierarchy of obstacles and the mechanisms of Brownian
dislocation creep through each of the different kinds of interacting
obstacles.

2.2. Multi-scale hierarchy of interacting obstacles

When a dislocation is submitted to an external applied stress
�appl, its motion on the glide plane is controlled by the internal
stress field �int(x, y) generated by the obstacles (all the different
interacting structural defects). This stress field can present a regu-
lar distribution on the glide plane (for instance in the case of the
Peierls potential due to the crystallographic structure of the crystal
[10]) or random spatial fluctuations (for instance in the case of an
interaction with point obstacles randomly distributed on the glide
plane or structural defects distributed in the bulk [11]).

Considering all the different structural defects that can interact
with the dislocation leads to the existence of a multi-scale hierar-
chy of obstacles on the glide plane. This obstacle hierarchy can be
characterized by the total number N of different kinds of obstacles
appearing at different scales in the internal stress field �int(x, y).
One can then attribute a number k to each kind of obstacles, choos-
ing number 1 for the densest obstacles and number N for the more
dispersed obstacles.

An example of such a multi-scale hierarchy for N = 3 is illustrated
in Fig. 1: a dense distribution of weak and extended obstacles for
k = 1 (largest clear circles), for instance due to long-range interac-
tions with distant structural defects as point defects, a less dense
distribution of stronger but less extended obstacles for k = 2 (smaller
shaded circles), for instance due to short-range interaction with
point obstacles situated near the glide plane, and very dispersed
stronger defects for k = 3 (smaller gray circles), for instance due to
some precipitates, or to the dislocation forest, or to other stronger
obstacles.

2.3. Plastic strain rate due to long-range dislocation creep

During a plastic deformation experiment, if a constant stress
�appl = �0 is applied, the dislocations move through the obstacles
represented by the internal stress �int(x, y) by alternating successive
waiting times in front of the obstacles with Brownian jumps of these
obstacles, arising when sudden high enough thermal fluctuations
�̃th(x, u(x, t), t) take place. This macro-creep mechanism is respon-
sible for a plastic strain rate ε̇pl(�0, T), which has to depend strongly
on applied stress �0 and temperature T, and which is deduced from
the average plastic creep velocity ˙̄upl of dislocations by the Orowan
relation, in which 
 is the density of mobile dislocations:

ε̇pl(�0, T) = 
b ˙̄upl(�0, T) (3)

The total time �, which is needed, for a dislocation to move on an
average distance d̄ (as illustrated in Fig. 1) is the sum of the waiting
times passed in front of all the obstacles if one neglects the short
times used for the jumps. � is also the sum of the N partial waiting
times �k passed by the dislocation in front of all the obstacles of
kind k, so that:

˙̄upl(�0, T) = d̄

�
= d̄∑N

k=1�k

= 1∑N
k=1�k/d̄

= 1∑N
k=11/( ˙̄uk(�0, T))

(4)

This important relation shows that the average creep velocity
˙̄upl(�0, T) of a dislocation interacting with a multi-scale hierarchy
of obstacles can be obtained directly from the virtual macro-creep
velocities ˙̄uk(�0, T) of the same dislocation interacting only with the
obstacles of kind k, which allows one to write the plastic strain rate
associated with the long-range creep as

ε̇pl(�0, T) = 
b∑N
k=11/( ˙̄uk(�0, T))

(5)

in which the virtual macro-creep velocities ˙̄uk(�0, T) have to be
obtained from dynamical models of long-range dislocation motion
impeded only by the distribution of the obstacles of kind k, and
submitted to a constant applied stress �0 (see examples of such
models in Section 4). This relation implies in fact that the obstacles
responsible for the smallest velocity ˙̄uk(�0, T) essentially control
the plastic strain rate.

2.4. Anelasticity due to “fractal” short-range dislocation creep

During internal friction measurement, a cyclic stress �appl(t) is
applied with amplitude �0 and frequency ω. This stress is respon-
sible for a short-range cyclic creep ūan(t) of the dislocation segments
and a cyclic anelastic strain εan(t) = 
būan(t) (Fig. 2). Due to the
multi-scale hierarchy of obstacles, the area swept by a dislocation
segment will present some kind of “fractal aspect”, as illustrated in
Fig. 2, so that the total anelastic strain εan(t) has to be composed of
several contributions:

εan(t) = 
būan(t) = 
b

(
ūpl(t) +

N∑
k=2

ū(k)
an (t)

)
(6)
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