Contents lists available at ScienceDirect

# Materials Science and Engineering A

journal homepage: www.elsevier.com/locate/msea



# Low pressure hot pressing of $B_4C$ matrix ceramic composites improved by $Al_2O_3$ and TiC additives

Junlong Sun<sup>a,\*</sup>, Changxia Liu<sup>a</sup>, Rugui Wang<sup>b</sup>

- a Key Laboratory of Advanced Manufacturing and Automation Technology, Ludong University, Yantai 264025, Shandong Province, PR China
- <sup>b</sup> College of Mechanical Engineering, Guangxi University, Nanning 53004, Guangxi Province, PR China

#### ARTICLE INFO

Article history: Received 28 November 2008 Received in revised form 17 April 2009 Accepted 8 June 2009

 $\begin{tabular}{ll} \textit{Keywords:} \\ B_4C \\ Composites \\ Mechanical properties \\ TiC \\ Al_2O_3 \\ \end{tabular}$ 

#### ABSTRACT

 $B_4C$  matrix ceramic composites toughened by  $Al_2O_3$  and TiC were prepared by low pressure hot pressing. The relative density, Vickers hardness, fracture toughness and flexural strength of the new fabricated composites were measured. Microstructure observations of the fracture surfaces and the indentation cracks of the  $B_4C$  matrix ceramic composites were analyzed, and an X-ray diffraction phase analysis was performed. The experiment results showed that chemical reactions took place during the low pressure hot pressing process and resulted in the  $B_4C/Al_2O_3/TiB_2$  composite. The densification rate of the  $B_4C$  matrix ceramic composites was enhanced and the mechanical properties were improved via the introduction of  $Al_2O_3$  and TiC additives. The Vickers hardness, fracture toughness and flexural strength of the composite with the addition of 4.7 wt.%  $Al_2O_3$  and 10 wt.% TiC were 24.8 GPa, 4.8 MPa m<sup>1/2</sup> and 445 MPa, respectively.

© 2009 Elsevier B.V. All rights reserved.

### 1. Introduction

Boron carbide possesses an excellent hardness, outstanding elastic modulus, a low specific gravity, high wear resistance, high melting point, good chemical inertness, and so on, making it a promising engineering ceramic material [1–5]. In particular, boron carbide is the third hardest technical material after diamond and cubic boron nitride at room temperature. The B<sub>4</sub>C matrix ceramic composites manufactured using a high densification rate by hot press sintering are suitable for use as sand blasting nozzles, and they can endure longer erosion-times than other nozzle materials before failing under high blasting conditions [5]. However, monolithic B<sub>4</sub>C suffers from a low fracture toughness and flexural strength and poor sinterability due to its high sintering temperature and pressure required for complete densification (which therefore limits its application as an engineering ceramic).

Numerous attempts have been made to overcome the above weaknesses of the material. It has been shown that the addition of a second phase to the  $B_4C$  matrix can improve its mechanical properties (such as its strength and toughness), as well as decrease its sintering temperature. In earlier studies,  $B_4C$  matrix ceramic composites, e.g.,  $B_4C/TiB_2$ ,  $B_4C/Al$ ,  $B_4C/CrB_2$ ,  $B_4C/Cu$ ,  $B_4C/(W,Ti)C$  and  $B_4C/C$ , have been developed [1–6]. However, there are few reports on the introduction of  $Al_2O_3$  and TiC in the  $B_4C$  matrix to improve

#### 2. Experimental procedure

A commercial  $B_4C$  high purity powder with a grain size of  $3-5~\mu m$  was used as the starting material. TiC and  $Al_2O_3$  with grain sizes of  $1-2~\mu m$  were used as additives. The amounts and types of impurities in  $B_4C$ ,  $Al_2O_3$  and TiC are shown in Table 1.

The raw materials were blended with each other in the proportions listed in Table 2, and the combined powders were mixed by wet ball milling in an alcohol medium for  $100\,h$  with cemented carbide balls. The container, which is made of cemented carbide, was rotated at a speed of  $100\,\text{rpm}$ . The average grain size of the final milled powders was less than  $1.5\,\mu\text{m}$ . After drying the powder, densification of the compacted powder was accomplished by low pressure hot pressing in a  $N_2$  atmosphere in a graphite die to produce ceramic disks with a diameter of  $50\,\text{mm}$  and thickness of  $6\,\text{mm}$ . The hot pressing parameters are listed in Table 2.

The sintered ceramic disks were cut into pieces, and standard test pieces ( $3 \text{ mm} \times 4 \text{ mm} \times 36 \text{ mm}$ ) were obtained through rough grinding, finish diamond grinding, and polishing. A three-point-

its mechanical properties and decrease its hot press sintering temperature. In this paper,  $B_4 C$  matrix ceramic composites toughened by  $Al_2O_3$  and TiC were fabricated by low pressure hot pressing. The objective of this work was to investigate the effect of  $Al_2O_3$  and TiC on the mechanical properties, microstructure, and sinterability of  $B_4 C$  matrix ceramic composites. As a result, a method to produce  $B_4 C$  matrix ceramic composites with a high performance capability after low sintering temperature can be found.

<sup>\*</sup> Corresponding author. Tel.: +86 15866472136. *E-mail address*: sjlthink@126.com (J. Sun).

**Table 1** The amounts and types of impurities in  $B_4C$ , TiC and  $Al_2O_3$ .

| Raw materials    | Impurities (wt.%) ≤ |          |           |                   |                  |
|------------------|---------------------|----------|-----------|-------------------|------------------|
|                  | Free C              | $B_2O_3$ | $Fe_2O_3$ | Na <sub>2</sub> O | SiO <sub>2</sub> |
| B <sub>4</sub> C | 0.44                | 0.4      | 0.05      | -                 | -                |
| TiC              | 1.5                 | -        | 0.1       | -                 | -                |
| $Al_2O_3$        | 0.5                 | -        | 0.04      | 0.1               | 0.1              |

flexural mode was used to measure the flexural strength on an electronic universal experimental instrument with a span of 20 mm operating at a crosshead speed of 0.5 mm/min. Six samples, taken from a single ceramic disk, were used to measure the flexural strength of each composition in air at room temperature. The flexural strength was calculated by the following formula [7]:

$$\sigma_f = \frac{3PL}{2bh^2} \tag{1}$$

where  $\sigma_f$  is the flexural strength (MPa) and P is the load (N) under which the samples break, b and h are the width and height (mm), and L is the span (mm).

The relative densities of the composites were calculated according to the equation:

$$\rho_R = \frac{\rho_A}{\rho_T} \tag{2}$$

where  $\rho_R$  is the relative density,  $\rho_A$  is the actual density (cm<sup>3</sup>) of the sintered sample, and  $\rho_T$  is the theoretical density (cm<sup>3</sup>) of the composite. The actual density  $\rho_A$  was obtained according to the expression:

$$\rho_A = \frac{M}{V} \tag{3}$$

where V is the volume (cm<sup>3</sup>) of the distilled water that the sintered sample drains and m is the mass (g) of the same sample. The value of the theoretical density  $\rho_T$  depends on the composition of the composite, and was calculated by the following formula:

$$\rho_{T} = \sum \rho_{i} \cdot V_{i} \tag{4}$$

where  $\rho_i$  and  $V_i$  are the theoretical density and volume content of each composition, respectively.

The composite's Vickers hardness was measured on a polished surface with a load of 9.8 N for 5 s with a micro-hardness tester. The fracture toughness measurement was performed using an indentation method with a hardness tester, and the results were obtained according to the formula proposed by Cook and Lawn [8]. An XRD analysis was performed to identify the crystal line phases after sintering. The fracture surfaces' and polished surfaces' microstructures were studied by scanning electron microscopy.

#### 3. Results and discussion

T1

T2

T3 T4

T5

#### 3.1. X-ray diffraction phase analysis

100

90

85.3

80.5

94.7

The X-ray diffraction analysis of samples T1, T2, T3, T4 and T5, low pressure sintered at  $1900\,^{\circ}\text{C}$  for  $60\,\text{min}$ , are shown in Fig. 1.

0

5

4.7

4.5

Table 2
Compositions and hot pressing parameters of the samples.

Samples

Compositions (wt.%)

B<sub>4</sub>C

Al<sub>2</sub>O<sub>3</sub>

TiC

Because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the existence of TiB<sub>2</sub>, produced by the reaction between the because the existence of TiB<sub>2</sub>, produced by the reaction between the existence of TiB<sub>2</sub>, produced by the reaction between the existence of TiB<sub>2</sub>, produced by the reaction between the existence of TiB<sub>2</sub>, produced by the reaction between the existence of Ti

2150

1900

1900

1900

2150

0

5

10

15

0

It can be seen that  $B_4C$  and C exist in sample T1, where the C may come mainly from the graphite die. No trace of TiC was found in any of the composite samples, and  $B_4C$ ,  $TiB_2$ , C and  $Al_2O_3$  are visible in the  $B_4C$  matrix ceramic composites, where  $TiB_2$  and some of the C were formed by the following reaction:

$$B_4C + 2TiC \rightarrow 2TiB_2 + 3C \tag{5}$$

According to the thermo-chemical data [9] for the B<sub>4</sub>C–TiC system, the Gibbs free energy ( $\Delta G_{\theta}^{T}$ ) of Eq. (5) at 1900 °C was –200.800 kJ/mol. Therefore, the reaction described by Eq. (5) probably took place during the low pressure hot pressing process.

As C was thought to react with  $B_2O_3$ , an impurity in  $B_4C$ , the following reaction may have occurred [10]:

$$2B_2O_3 + 7C \rightarrow B_4C + 6CO$$
 (6)

The value of  $\Delta G_{\theta}^T$  of Eq. (6) at 1900 °C was -516.039 kJ/mol [9]. Thus, the reaction described by Eq. (6) also probably took place for all the samples during the low pressure hot pressing process.

There was still some C left after reacted with  $B_2O_3$  (Eq. (6)), as seen in Fig. 1. Therefore,  $B_2O_3$  reacted with C completely. In other words, no trace of  $B_2O_3$  existed in samples T1, T2, T3, T4 and T5. The elimination of  $B_2O_3$  contributed to the densification of the  $B_4C$  matrix ceramic composites.

It has been reported that  $B_4C$  can react with  $Al_2O_3$  and free C by the following chemical reaction [11,12]:

$$6B_4C + Al_2O_3 + C \rightarrow 2AlB_{12}C_2 + 3CO$$
 (7)

 $AlB_{12}C_2$  will be in a molten state at  $1900\,^{\circ}$ C, which may contribute to the enhanced densification rate of the  $B_4C$  matrix ceramic composites [11,12]. However,  $\Delta G_{\theta}^T$  of Eq. (7) at  $1900\,^{\circ}$ C could not be calculated due to a lack of thermo-chemical data for  $AlB_{12}C_2$  [9]. There is no trace of  $AlB_{12}C_2$  in Fig. 1 (except T1), which indicates either that the process described in Eq. (7) probably did not take place or that the content of  $AlB_{12}C_2$  was too small to be detected by XRD analysis.

#### 3.2. Densification rate of $B_4C$ matrix ceramic composites

The relative densities of B<sub>4</sub>C matrix ceramic composites with different Al<sub>2</sub>O<sub>3</sub> and TiC contents are listed in Table 3. As a function of the low pressure sintering time, the relative density of B<sub>4</sub>C matrix ceramic composites increased with an increase in the low pressure sintering time. By comparing T1 with T5, we can see that the introduction of Al<sub>2</sub>O<sub>3</sub> appears to enhance the relative density of B<sub>4</sub>C matrix ceramic materials. This conclusion is similar to that drawn by Nishikawa and Takagi [13,14]. The relative density of the T3 sample sintered at 1900 °C for 60 min reached 98%, while the density was only 92.4% for monolithic B<sub>4</sub>C sintered at 2150 °C for 60 min. These results indicate that the low pressure sintering temperature can be decreased while the relative density is improved through the addition of TiC. There exists high covalent bonding in monolithic B<sub>4</sub>C, which makes it difficult to densify. The introduction of TiC might improve the sinterability of B<sub>4</sub>C matrix ceramic composites because the existence of TiB2, produced by the reaction between the

> 30-75 30-75

> 30 - 75

30 - 75

30-75

35

35

35

35

## Download English Version:

# https://daneshyari.com/en/article/1580376

Download Persian Version:

https://daneshyari.com/article/1580376

<u>Daneshyari.com</u>