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Adsorption of a dilute solute from a fluid in nonplug flow through a fixed bed is investigated via a per-
turbation approach. The continuity equation for fixed-bed adsorption with axial dispersion is solved for
the constant pattern concentration profile with the axial velocity characterized by a general axisymmetric
function and the system having no resistances to external or intraparticle mass transfer. The isotherm
is slightly favorable (i.e., concave downward) in order to justify the assumption that axial gradients of
concentration are independent of the radial coordinate in the bed, as in the classical problem of Taylor
diffusion. A series expansion of a general isotherm is used to treat adsorption equilibrium. The solution
reveals the formation of a radial gradient of fluid-phase concentration and breakthrough behavior at
the bed outlet dependent on the nonlinearity of the isotherm and the magnitude of the nonplug-flow-
velocity profile. The results can be used to predict the breadth of the breakthrough wave of many
chromatographic-type processes for packed beds and slightly favorable isotherms.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A fundamental understanding of the factors that affect break-
through behavior of a fixed bed is required in order to design and
optimize an adsorption-based process. For many applications, such
as those involving low breakthrough concentrations, a quantitative
understanding of the phenomena that may alter the breadth of a
breakthrough curve is necessary. These phenomena include, but are
not limited to, external mass transfer resistances, intraparticle mass
transfer resistances, the nonlinearity of adsorption isotherms, and
dispersion in the axial and transverse directions.

A considerable amount of work has been performed in order
to analyze phenomena that affect the breadth of the breakthrough
curve for adsorption processes with plug flow. For example, Costa
and Rodrigues (1985) demonstrate the significance of axial disper-
sion on the breadth of the breakthrough curve. As the Peclet num-
ber is increased the width of the breakthrough curve decreases, or
tightens up. Coppola and LeVan (1981) indicate the influence that
fluid–solid-adsorption equilibria has on the breakthrough curve for
deep beds. As an adsorption bed begins to saturate, the velocity of
the adsorption wave for a very favorable adsorption isotherm ap-
proaches the fluid velocity near the bed outlet and subsequently the
breakthrough is abrupt.

∗ Corresponding author. Tel.: +16153431672; fax: +16153437951.
E-mail address: m.douglas.levan@vanderbilt.edu (M.D. LeVan).

0009-2509/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ces.2008.10.068

However, breakthrough behavior for beds of moderate to large
cross-sectional area, as well as for laboratory scale columns, is rarely
as sharp as predicted by theory based on plug flow. Concentration
waves passing through beds spread as the result of deviations from
plug flow caused by both the nonuniformity of bed packings and wall
effects in addition to the mechanisms of particle scale mass transfer
and axial dispersion.

The scope of this paper involves investigating how adsorption
processes described by constant pattern behavior are affected by
small deviations from plug flow. Such deviations impact the break-
through behavior at the bed outlet by saturating various radial posi-
tions of the adsorption bed at different times, in effect broadening the
breakthrough curve. Deviations from plug flow exist in real adsorp-
tion beds due to nonuniform packings and channeling effects at the
bed wall. Using laser-Doppler anemometry, Vortmeyer and Schuster
(1983) have shown experimentally that the local fluid-phase velocity
varies significantly across the cross section of the bed and is greater
at the wall than at the centerline of the bed. Experiments and nu-
merical analyses done by Miyabe and Guiochon (1999) and Astrath
et al. (2007) also agree that the fluid-phase velocity is greater at
the wall than the centerline in chromatography columns. In con-
trast, computational fluid dynamics simulations performed of HPLC
chromatographic processes to determine numerical column profiles
have predicted parabolic and other distorted concentration fronts
advanced along the centerline of the column (Boysen et al., 2002).

In comparison to the amount of work that has dealt with con-
stant pattern behavior for plug flow, there has been limited research
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concerning constant pattern behavior with deviations from plug
flow. Tereck et al. (1987) discuss the relationship among concentra-
tions for a constant pattern profile under nonplug-flow conditions
for a cylindrical channel with adsorption at the wall. They demon-
strate that a constant pattern profile can be approached for adsorp-
tion with nonplug-flow-velocity profiles. Rudisill and LeVan (1991)
investigate adsorption of a dilute solute from fluid in nonplug flow
through a porous structure of arbitrary but constant cross section.
Avilés and LeVan (1991) create network models to describe nonuni-
form flow and nonlinear adsorption in packed beds. Although not
solved for a system exhibiting constant pattern behavior, Vortmeyer
and Michael (1985) numerically solve the nonplug-flow gas-phase
continuity equation with adsorption rates modeled by a linear driv-
ing force. They note that the numerical model predicted distinct dif-
ferences between the breakthrough curves near the wall and the
center of the bed.

In this paper, we solve the continuity equation for fixed-bed ad-
sorption with small deviations from plug flow, dispersion in the
axial and transverse directions, and with adsorption equilibrium
described by a slightly favorable isotherm. Both external mass trans-
fer from interstitial fluid to particles and intraparticle mass trans-
fer are assumed to be rapid giving local equilibrium between fluid
and adsorbed phases. We begin by first assuming that the adsorbent
bed is sufficiently long for a constant pattern adsorption wave to
develop. Then, we decompose the continuity equation into a series
of differential equations similar to Aris (1956). We use a perturba-
tion analysis to obtain an approximate solution for the fluid-phase
concentration. The results are general in the sense that the solution
applies to perturbations of any axisymmetrical velocity profile and
slightly favorable isotherm. We believe this to be the first analytical
treatment of constant pattern behavior for a fixed-bed adsorber de-
scribed by a nonplug-flow differential equation with axial and radial
dispersion.

2. Theory

We examine mass transfer for axisymmetrical flow of fluid
through a deep bed of packed adsorbent particles, so that the fluid-
phase concentration c is a function of time, bed radius, and axial
position only. The material balance for this system may be written
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where �v is the local velocity, which may vary across the cross section
of the bed but not axially, Rbed is the radius of the bed, and the
adsorbed-phase concentration n is described by a slightly favorable
(i.e., concave downward) adsorption isotherm. Dr and Dz in Eq. (1)
are molecular diffusion or dispersion coefficients in the radial and
axial directions. We let
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where 〈v〉 is the mean superficial velocity, c′ and n′ are presatu-
rated concentrations (zero for an initially clean bed), c′′ is the feed

concentration, and n′′ is the corresponding adsorbed-phase concen-
tration. Eq. (1) becomes
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A new coordinate is defined in order to follow the stoichiometric
front of the adsorption wave. We let

� = za − t1
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where �, the partition ratio, is given by
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Assuming that the bed length L is large, a constant pattern pro-
file will develop. Furthermore, for �?1, Coppola and LeVan (1981)
show that the fluid-phase accumulation term in Eq. (3) is negligible,
transforming the continuity equation to
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with boundary conditions in the axial direction of

c∗ → 1 as � → −∞, c∗ → 0 as � → +∞ (7)

We describe the local velocity by a small perturbation from plug
flow using

u(�) = 1 + �f (�) (8)

where � is the perturbation parameter for which �>1, and f (�)=O(1)
is an axisymmetric term such that

∫ 1
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We solve Eq. (6) using a perturbation method with an assumed
solution of the form
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Substituting Eq. (10) into Eq. (6) gives the zero-order differential
equation
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where n∗
0 = n∗(c∗

0).
We solve this equation following the method outlined by Coppola

and LeVan (1981) resulting in
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which they integrated for Langmuir (constant separation factor) and
Freundlich isotherms.

The first and second-order differential equations are obtained by
first writing the dimensionless adsorbed-phase concentration n∗ in
a Taylor series expansion of the form
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where c∗′
0 is the point at which the loading is centered. The subse-

quent examples, with profiles centered about the plug-flow solution,
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