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An accurate and efficient analytical method for computing the three-dimensional local void fraction is
proposed in the context of discrete particle modeling. It is developed for the general case of unstruc-
tured meshes whose use is unavoidable to efficiently simulate modern gas–solid fluidized bed reactors
characterized by complex geometries. The method relates the three-dimensional void fraction to several
geometrical parameters. This allows the exact voidage evaluation for the frequently occurring case of
having particles not wholly contained within one grid cell regardless its shape. Failing to accurately
account for these common particle configurations in dense gas–particle systems has proven detrimental
to the accuracy of their simulations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete particle models (DPMs) coupled to a finite volume de-
scription of the gas-phase dynamics have been used in a panoply of
chemical and petrochemical applications since they were first intro-
duced by Tsuji et al. (1993) for the soft-sphere version and Hoomans
et al. (1996) for the hard-sphere approach. Using DPMs, the parti-
cle motion is resolved at such a particle scale that many important
features related to the particle motion in gas–solid systems could be
reasonably captured. Many parameters contribute to the level of ac-
curacy of the DPMs, such as the restitution and friction coefficients
for the hard-sphere version and stiffness and damping coefficients for
the soft-sphere version. In addition, the void fraction should be ac-
curately determined since the empirical or theoretical relations that
describe gas–solid interactions are found to be strongly dependent
on it. Also, in discrete particle modeling the solid particles occupy
part of the gas-phase volume and this is incorporated in the conser-
vation equations of the fluid phase through multiplying all the gas
properties by the void fraction. Therefore inaccurate computation of
the void fraction would adversely affect the general performance of
the model.

Early DPM studies were based on the two-dimensional (2D)
model using structured regular grids. The voidage �2D in 2D DPMs
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is calculated according to the space or area occupied by the parti-
cles in the 2D grid cells. This is not consistent with the empirical
drag formula in which the correlated porosity �3D is derived for real
three-dimensional (3D) systems. To correct this inconsistency, two
strategies have been used to transform the 2D porosity. The first one
was suggested by Hoomans et al. (1996) and it is described by the
following equation:

�3D = 1 − 2√
�
√
3
(1 − �2D)

3/2 (1)

This equation was derived on the basis of a comparison between a
2D hexagonal lattice and a 3D cubic lattice assuming equal inter-
particle distances. Ouyang and Li (1999) gave a formula similar to
the above. The second strategy was presented by Xu and Yu (1997),
and it gives

�3D = 1 −
∑

Vi

�V
(2)

where Vi is the volume of particle i, and the summation is taken
over all the particles in the cell volume �V = �x�ydp, which means
the 2D domain is regarded as a pseudo-3D one with a thickness of
one particle diameter, dp. Van Wachem et al. (2001) introduced an
empirical parameter containing the maximum experimental solids
packing in practice. They gave a slightly different equation from the
one given by Hoomans et al. (1996). Their numerical results indicated
that the 2D discrete particle simulations are sensitive to the porosity
estimation strategies.

http://www.sciencedirect.com/science/journal/ces
http://www.elsevier.com/locate/ces
mailto:chunliangwu@gmail.com


C.L. Wu et al. / Chemical Engineering Science 64 (2009) 1260 -- 1266 1261

Fig. 1. Approximate method to calculate the 2D and 3D porosity (2DAM and 3DAM).

With the massive increase in the computing capacities, 3D DPMs
have become tractable for the simulation of gas–solid flows in com-
plex domains such as cylindrical beds, tapered beds, or flat beds with
immersed tubes or baffles. For such complex system geometries, the
use of unstructured grids is more appropriate. It is in many cases the
only possibility to avoid unnecessary high resolution and to locally
accommodate the mesh to the complicated geometry boundaries.
The use of unstructured grids constitutes a challenge when it comes
to the estimation of the void fraction for both 2D and 3D DPMs, in
particular when particles are not fully contained in one cell that can
have any shape (wedged, tetrahedral, or hexahedral) and/or can in-
tersect particles through any of its boundaries (node, edge, or face).
Indeed, when the center of a particle locates on an edge shared by
two 2D cells or on a face shared by two 3D cells, there will be consid-
erable errors in the calculated porosity if the volume of this particle
is not accurately shared between these two cells. If the cell volume
is 20 times that of the particle, for example, neglecting the share
of the particle volume between two cells results in particle volume
fractions of 0.05 and 0. This represents a 50% relative error or 2.5%
absolute error in the volume fraction. Since the porosity plays a very
important role in the local mass and momentum balance of the gas
phase, the said errors should be avoided as far as possible.

In case of 2D square cells, the particle area shared by the four
neighboring cells can be calculated approximately as follows (see
Fig. 1a):

Ai =
�
4
(rp ± �1)(rp ± �2) (i = 1, 2, 3, 4) (3)

where rp is the particle radius. We refer to this approach as the 2D
approximate method (2DAM). In case of 3D cubic cells, Darmana
et al. (2005) give the following formula for the particle volume (see
Fig. 1b):

Vi = �iVp (4)

where Vp is the particle volume. The particle is treated as a cube
and �i is the cube volume fraction in the cell under consideration
(hereafter referred to as the 3D approximate method, 3DAM).

The use of the above two methods is limited to regular structured
grids. They are relatively simple to apply yet inaccurate. For solu-
tion domain discretized by unstructured grids, an approach named
point approximate method (PAM) is often used. In this approach, the
particle shape is omitted and the particle is considered as a point.
Thus, the split of particles between cells is neglected and particles
are considered to belong only to one cell.

In the following two sections, an analytical method to calculate
the void fraction for general unstructured meshes is proposed. It is

Fig. 2. Different particle positions in an unstructured 2D grid.

developed for cells of different shapes (wedged, tetrahedral, or hex-
ahedral) and for different particle–cell intersections (node, edge, or
face). It is validated in the context of discrete particle simulations
of 3D dense gas–particle systems and its numerical efficiency is im-
proved using the look-up table strategy. The method is detailed for
the 2D and 3D configurations separately.

2. The 2D case

The 2D unstructured mesh is often composed of triangular,
quadrilateral cells, or combinations of these two geometrical en-
tities. All possible particle–cell intersections can be studied using
three generic cases as it is depicted in Fig. 2. The covered area is the
full particle area for case (1). It is calculated for case (2) once the
intersection points between the edges of the cell and the particle
circumference are located. Case (3) is more complex. Hereafter we
call C0 the cell that hosts the center (O) of the particle while the
other cells that share the said particle are denoted by Cn (n=1, 2, . . .)
as depicted in Fig. 3. The corresponding areas that the said parti-
cle occupies in these cells are denoted by A0 and An (n = 1, 2, . . .),
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