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Analytical expressions are derived for the effective strain rate sensitivity exponent of a two phase material
when the behavior of both phases and of the composite itself can be described by power law rela-
tions between the stress and strain rates. The material is assumed to be plastically isotropic and obey
to von-Mises type creep behavior. Two types of boundary conditions are considered: strain or stress-

controlled. The obtained formulas are applied to a geological composite material (mixture of camphor
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and octachloropropane) with the help of different simple models of two phase composites.
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1. Introduction

Thanks to technical progress, new materials emerge with
improved performance. They are used in more and more extreme
conditions. Two phase materials are good examples. When they
are subjected to high temperatures, their components display
enhanced sensitivity to the applied strain rate. It is important to
be able to predict the strain rate sensitivity of a two phase material
in such conditions. The subject of this paper is to give some new
formulas for the calculation of the effective strain rate sensitivity of
multiphase materials.

In this work, isotropy is assumed for both phases as well as
for the composite with von-Mises type viscoplastic behavior. It is
well established that strain rate dependence of mechanical strength
of materials can be well described by a power law relationship
between the equivalent strain rate and the equivalent stress [1].
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Here & is the Mises equivalent stress and ¢ is the von-Mises equiv-
alent strain rate corresponding to the strain rate tensor &:

G =1/35;S;, (2)
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k represents the strength of the material in the constitutive law
expressed by Eq. (1) and &g is a reference constant (this is the strain
rate at which the stress level is: & = k). Finally, m characterizes the
strain rate sensitivity. Only the plastic part of the strain rate is used
in Egs. (1) and (3) and S means the deviatoric stress in Eq. (2). Rela-
tion (1) is valid at a given strain (the parameter k can express strain
hardening). While k normally decreases with an increase of tem-
perature, m usually increases. In this way, the effect of the strain
rate sensitivity becomes more and more important in the stress
level that the material can sustain in a given application. However,
a composite is made of two (or more) components that normally
do not have the same m values in their constitutive law:
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An important question arises then: what is the effective m value of
the composite? Little efforts have been done so far to answer this
problem. To estimate the m value, many authors simply employ the
so-called rule of mixtures:

m = fimy 4+ frmy. (6)

Here f; and f, are the volume fractions of the two phases, they sum
up to 1:

h+h=1 (7)
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Those authors who do not wish to introduce further assumptions
in their work (like relation (6)) may use an implicit numerical way
to find out the effective m value (see, for example, in [2]).

In the present paper, analytical expressions are derived for the
effective strain rate sensitivity exponent of a two phase material.
Two types of boundary conditions are considered: i. strain, ii. stress-
controlled conditions of testing. It will be shown that relation (6)
corresponds to non-realistic boundary conditions. The new the-
oretical formulas are applied to a geological composite material;
the mixture of camphor and octachloropropane, in the whole vol-
ume fraction range. For the mechanical behavior of this two phase
material, four simple models are employed; i: the classical uniform
deformation (Taylor) and the Static model, ii: the so-called Iso-W
which assumes that the plastic power is uniform within the whole
material [3,4] and another new model in which the macroscopic
plastic power dissipation is equal to the volume fraction average of
the phases (plastic-power-criterion model, ‘PPC’). While the macro-
scopic strain rate sensitivity values obtained using Static and the
two plastic power based approaches are all in good agreement with
experimental results, the stress-strain rate behavior depends sig-
nificantly on the model.

2. Basic hypotheses

A composite consisting of two phases is considered. Phase no.
1 is made up from inclusions while phase no. 2 is the matrix. The
behavior of the phases can be described by the usual viscous power
laws given by Eqgs. (4) and (5) while that of the composite is assumed
to be well approached by the power law (1), where m possibly
depends on the strain rate &. For simplicity, it is assumed in this
work that the average stress and strain rate quantities in the phases
are proportional to the macroscopic ones. Thus, the strain and stress
localizations are defined by:
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where rq, 1 are the strain rates, and ¢, t; are the stress localization
factors. The macroscopic strain rate and stress state are obtained
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It can be shown using the previous relations and hypotheses that
the above tensorial relations can be written using only equivalent
quantities:

&1 =118, &) =138, (12)
61 =t16, &9 =10, (13)
& =f181 + fré2, (14)
& =f161 + f207. (15)

The rq, 2, t1, t, quantities are not independent, the following rela-
tions are valid:

finn+hrn=1, fitt+hHty=1. (16)

3. Effective strain rate sensitivity in strain-controlled case

One can identify the conditions of testing as strain-controlled if
the test is conducted by prescribing the strain rate. That is, when
the boundary conditions are formulated in terms of strains. In such

a case, the rule of mixtures for the stresses can be a starting point
(Eq. (15)). Using Egs. (1)-(3), one obtains:
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In order to determine the strain rate sensitivity parameter of a mate-
rial, the experimentalist applies a jump in the strain rate. Let us
change the applied strain rate on the composite by a factor of «:

& — aé. (18)

It is assumed here that « is not too large (around unity). In this first
modeling, we assume that the strain rates are multiplied by the

same factor in the two phases
;,‘1 —>O{<z)1, g‘z—)O{g‘z. (19)

Using Eqs. (18) and (19) in (17) yields:
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Another reason to keep « around unity is that — in principle - m can
depend on the applied strain rate. Assuming that this dependence
is negligible at this point (which will be confirmed by the experi-
mental results below), we employ a Taylor series around o =1:

o™ =1+m(a—1). (21)

Using a Taylor series also for @™ and «™2, as well asrelation (17), the
effective strain rate sensitivity of the composite can be expressed
from (20):
T . M T . M
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Employing now the strain localization factors (Eq. (12)), a general
formula for m can be obtained:
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Using Egs. (4) and (5), the effective m-value can also be expressed
as a function of the stress ratio t;/t1:

_ fimi +fomy(ty/t)
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As can be seen from this formula, the rule of mixture (Eq. (6)),
usually employed in the literature to obtain the effective m-value,
corresponds to the case when t, /t; = 1 meaning equal stress states in
the phases, that is, when the Static model applies. The Static model,
however, cannot be used in relation with formula (22), which was
obtained from the assumption that the boundary conditions are
controlled in strain.

For the special case when the two phases deform identically
(Taylor model) r{ =1, =1, thus m can be obtained from:

(25)
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4. Effective strain rate sensitivity in stress-controlled case

In contrast to the strain-controlled case, the conditions of testing
can also be defined by imposing the stress state. In such a case, the
boundary conditions are formulated in terms of stresses. Therefore,
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